These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
351 related articles for article (PubMed ID: 15698684)
1. Effect of relative humidity on germination of ascospores and macroconidia of Gibberella zeae and deoxynivalenol production. Beyer M; Verreet JA; Ragab WS Int J Food Microbiol; 2005 Feb; 98(3):233-40. PubMed ID: 15698684 [TBL] [Abstract][Full Text] [Related]
2. Germination of Ascospores of Gibberella zeae after exposure to various levels of relative humidity and temperature. Gilbert J; Woods SM; Kromer U Phytopathology; 2008 May; 98(5):504-8. PubMed ID: 18943217 [TBL] [Abstract][Full Text] [Related]
3. Strategies for managing Fusarium head blight and deoxynivalenol accumulation in wheat. Yuen GY; Schoneweis SD Int J Food Microbiol; 2007 Oct; 119(1-2):126-30. PubMed ID: 17716767 [TBL] [Abstract][Full Text] [Related]
4. Germination of Fusarium graminearum Ascospores and Wheat Infection are Affected by Dry Periods and by Temperature and Humidity During Dry Periods. Manstretta V; Morcia C; Terzi V; Rossi V Phytopathology; 2016 Mar; 106(3):262-9. PubMed ID: 26623994 [TBL] [Abstract][Full Text] [Related]
5. Fusarium head blight severity and deoxynivalenol concentration in wheat in response to Gibberella zeae inoculum concentration. Stein JM; Osborne LE; Bondalapati KD; Glover KD; Nelson CA Phytopathology; 2009 Jun; 99(6):759-64. PubMed ID: 19453236 [TBL] [Abstract][Full Text] [Related]
6. Plump kernels with high deoxynivalenol linked to late Gibberella zeae infection and marginal disease conditions in winter wheat. Cowger C; Arrellano C Phytopathology; 2010 Jul; 100(7):719-28. PubMed ID: 20528190 [TBL] [Abstract][Full Text] [Related]
7. Estimating deoxynivalenol contents of wheat samples containing different levels of Fusarium-damaged kernels by diffuse reflectance spectrometry and partial least square regression. Beyer M; Pogoda F; Ronellenfitsch FK; Hoffmann L; Udelhoven T Int J Food Microbiol; 2010 Sep; 142(3):370-4. PubMed ID: 20678823 [TBL] [Abstract][Full Text] [Related]
8. Temperature and water activity effects on growth and temporal deoxynivalenol production by two Argentinean strains of Fusarium graminearum on irradiated wheat grain. Ramirez ML; Chulze S; Magan N Int J Food Microbiol; 2006 Feb; 106(3):291-6. PubMed ID: 16236377 [TBL] [Abstract][Full Text] [Related]
9. Mycotoxins in rice. Tanaka K; Sago Y; Zheng Y; Nakagawa H; Kushiro M Int J Food Microbiol; 2007 Oct; 119(1-2):59-66. PubMed ID: 17913273 [TBL] [Abstract][Full Text] [Related]
10. Estimating mycotoxin contents of Fusarium-damaged winter wheat kernels. Beyer M; Klix MB; Verreet JA Int J Food Microbiol; 2007 Nov; 119(3):153-8. PubMed ID: 17706313 [TBL] [Abstract][Full Text] [Related]
11. Transfer of Fusarium mycotoxins and 'masked' deoxynivalenol (deoxynivalenol-3-glucoside) from field barley through malt to beer. Lancova K; Hajslova J; Poustka J; Krplova A; Zachariasova M; Dostalek P; Sachambula L Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Jun; 25(6):732-44. PubMed ID: 18484301 [TBL] [Abstract][Full Text] [Related]
12. Comparison of environmental profiles for growth and deoxynivalenol production by Fusarium culmorum and F. graminearum on wheat grain. Hope R; Aldred D; Magan N Lett Appl Microbiol; 2005; 40(4):295-300. PubMed ID: 15752221 [TBL] [Abstract][Full Text] [Related]
13. Gibberella zeae ascospore production and collection for microarray experiments. Pasquali M; Kistler C J Vis Exp; 2006 Nov; (1):115. PubMed ID: 18704186 [TBL] [Abstract][Full Text] [Related]
14. Fusarium graminearum infection and deoxynivalenol concentrations during development of wheat spikes. Cowger C; Arellano C Phytopathology; 2013 May; 103(5):460-71. PubMed ID: 23252971 [TBL] [Abstract][Full Text] [Related]
15. Limiting mycotoxins in stored wheat. Magan N; Aldred D; Mylona K; Lambert RJ Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 May; 27(5):644-50. PubMed ID: 20455159 [TBL] [Abstract][Full Text] [Related]
16. Mycotoxin production in wheat grains by different Aspergilli in relation to different relative humidities and storage periods. Atalla MM; Hassanein NM; El-Beih AA; Youssef YA Nahrung; 2003 Feb; 47(1):6-10. PubMed ID: 12653428 [TBL] [Abstract][Full Text] [Related]
17. Post-anthesis moisture increased Fusarium head blight and deoxynivalenol levels in North Carolina winter wheat. Cowger C; Patton-Ozkurt J; Brown-Guedira G; Perugini L Phytopathology; 2009 Apr; 99(4):320-7. PubMed ID: 19271972 [TBL] [Abstract][Full Text] [Related]
18. Fusarium mycotoxins in Lithuanian cereals from the 2004-2005 harvests. Mankeviciene A; Butkute B; Dabkevicius Z; Suproniene S Ann Agric Environ Med; 2007; 14(1):103-7. PubMed ID: 17655186 [TBL] [Abstract][Full Text] [Related]
19. Rain Splash Dispersal of Gibberella zeae Within Wheat Canopies in Ohio. Paul PA; El-Allaf SM; Lipps PE; Madden LV Phytopathology; 2004 Dec; 94(12):1342-9. PubMed ID: 18943705 [TBL] [Abstract][Full Text] [Related]
20. Head Blight Gradients Caused by Gibberella zeae from Area Sources of Inoculum in Wheat Field Plots. Fernando WG; Paulitz TC; Seaman WL; Dutilleul P; Miller JD Phytopathology; 1997 Apr; 87(4):414-21. PubMed ID: 18945120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]