BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 15699036)

  • 1. Beta3 tyrosine phosphorylation and alphavbeta3-mediated adhesion are required for Vav1 association and Rho activation in leukocytes.
    Gao C; Schaefer E; Lakkis M; Blystone SD
    J Biol Chem; 2005 Apr; 280(15):15422-9. PubMed ID: 15699036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Pyk2-Vav1 complex is recruited to beta3-adhesion sites to initiate Rho activation.
    Gao C; Blystone SD
    Biochem J; 2009 Apr; 420(1):49-56. PubMed ID: 19207108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vav1 and Ly-GDI two regulators of Rho GTPases, function cooperatively as signal transducers in T cell antigen receptor-induced pathways.
    Groysman M; Hornstein I; Alcover A; Katzav S
    J Biol Chem; 2002 Dec; 277(51):50121-30. PubMed ID: 12386169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beta 3 integrin phosphorylation is essential for Arp3 organization into leukocyte alpha V beta 3-vitronectin adhesion contacts.
    Chandhoke SK; Williams M; Schaefer E; Zorn L; Blystone SD
    J Cell Sci; 2004 Mar; 117(Pt 8):1431-41. PubMed ID: 14996908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guanine exchange-dependent and -independent effects of Vav1 on integrin-induced T cell spreading.
    del Pozo MA; Schwartz MA; Hu J; Kiosses WB; Altman A; Villalba M
    J Immunol; 2003 Jan; 170(1):41-7. PubMed ID: 12496381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vav GEFs are required for beta2 integrin-dependent functions of neutrophils.
    Gakidis MA; Cullere X; Olson T; Wilsbacher JL; Zhang B; Moores SL; Ley K; Swat W; Mayadas T; Brugge JS
    J Cell Biol; 2004 Jul; 166(2):273-82. PubMed ID: 15249579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition and activation of Rho GTPases by Vav1 and Vav2 guanine nucleotide exchange factors.
    Heo J; Thapar R; Campbell SL
    Biochemistry; 2005 May; 44(17):6573-85. PubMed ID: 15850391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vav2 activates Rac1, Cdc42, and RhoA downstream from growth factor receptors but not beta1 integrins.
    Liu BP; Burridge K
    Mol Cell Biol; 2000 Oct; 20(19):7160-9. PubMed ID: 10982832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vav2 as a Rac-GDP/GTP exchange factor responsible for the nectin-induced, c-Src- and Cdc42-mediated activation of Rac.
    Kawakatsu T; Ogita H; Fukuhara T; Fukuyama T; Minami Y; Shimizu K; Takai Y
    J Biol Chem; 2005 Feb; 280(6):4940-7. PubMed ID: 15485841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rho GTPases link cytoskeletal rearrangements and activation processes induced via the tetraspanin CD82 in T lymphocytes.
    Delaguillaumie A; Lagaudrière-Gesbert C; Popoff MR; Conjeaud H
    J Cell Sci; 2002 Jan; 115(Pt 2):433-43. PubMed ID: 11839793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hemopoietic Rho/Rac guanine nucleotide exchange factor Vav1 regulates N-formyl-methionyl-leucyl-phenylalanine-activated neutrophil functions.
    Kim C; Marchal CC; Penninger J; Dinauer MC
    J Immunol; 2003 Oct; 171(8):4425-30. PubMed ID: 14530369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vav family proteins couple to diverse cell surface receptors.
    Moores SL; Selfors LM; Fredericks J; Breit T; Fujikawa K; Alt FW; Brugge JS; Swat W
    Mol Cell Biol; 2000 Sep; 20(17):6364-73. PubMed ID: 10938113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A guanine nucleotide exchange factor-independent function of Vav1 in transcriptional activation.
    Kuhne MR; Ku G; Weiss A
    J Biol Chem; 2000 Jan; 275(3):2185-90. PubMed ID: 10636924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosine phosphorylation of beta3 integrin provides a binding site for Pyk2.
    Butler B; Blystone SD
    J Biol Chem; 2005 Apr; 280(15):14556-62. PubMed ID: 15695828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrin-linked kinase activity regulates Rac- and Cdc42-mediated actin cytoskeleton reorganization via alpha-PIX.
    Filipenko NR; Attwell S; Roskelley C; Dedhar S
    Oncogene; 2005 Sep; 24(38):5837-49. PubMed ID: 15897874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A role of kindlin-3 in integrin αMβ2 outside-in signaling and the Syk-Vav1-Rac1/Cdc42 signaling axis.
    Xue ZH; Feng C; Liu WL; Tan SM
    PLoS One; 2013; 8(2):e56911. PubMed ID: 23437269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An SH2 domain-dependent, phosphotyrosine-independent interaction between Vav1 and the Mer receptor tyrosine kinase: a mechanism for localizing guanine nucleotide-exchange factor action.
    Mahajan NP; Earp HS
    J Biol Chem; 2003 Oct; 278(43):42596-603. PubMed ID: 12920122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Cdc42 mutant specifically activated by intersectin.
    Smith WJ; Hamel B; Yohe ME; Sondek J; Cerione RA; Snyder JT
    Biochemistry; 2005 Oct; 44(40):13282-90. PubMed ID: 16201754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The molecular adapter SLP-76 relays signals from platelet integrin alphaIIbbeta3 to the actin cytoskeleton.
    Obergfell A; Judd BA; del Pozo MA; Schwartz MA; Koretzky GA; Shattil SJ
    J Biol Chem; 2001 Feb; 276(8):5916-23. PubMed ID: 11113155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a novel integrin signaling pathway involving the kinase Syk and the guanine nucleotide exchange factor Vav1.
    Miranti CK; Leng L; Maschberger P; Brugge JS; Shattil SJ
    Curr Biol; 1998 Dec; 8(24):1289-99. PubMed ID: 9843681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.