These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 15699067)
1. Bacterial toxins and the immune system: show me the in vivo targets. Galán JE J Exp Med; 2005 Feb; 201(3):321-3. PubMed ID: 15699067 [TBL] [Abstract][Full Text] [Related]
2. Anthrax toxins: A paradigm of bacterial immune suppression. Baldari CT; Tonello F; Paccani SR; Montecucco C Trends Immunol; 2006 Sep; 27(9):434-40. PubMed ID: 16861036 [TBL] [Abstract][Full Text] [Related]
3. A novel superantigenic exotoxin from Yersinia psuedotuberculosis and its position in the classification of the entire bacterial toxins. Uchiyama T Contrib Microbiol Immunol; 1995; 13():191-4. PubMed ID: 8833831 [No Abstract] [Full Text] [Related]
4. Bacillus anthracis: a multi-faceted role for anthrax lethal toxin in thwarting host immune defenses. Xu L; Frucht DM Int J Biochem Cell Biol; 2007; 39(1):20-4. PubMed ID: 17008119 [TBL] [Abstract][Full Text] [Related]
5. The detection of protective antigen (PA) associated with spores of Bacillus anthracis and the effects of anti-PA antibodies on spore germination and macrophage interactions. Cote CK; Rossi CA; Kang AS; Morrow PR; Lee JS; Welkos SL Microb Pathog; 2005; 38(5-6):209-25. PubMed ID: 15925272 [TBL] [Abstract][Full Text] [Related]
6. Plasmid-based vaccination with candidate anthrax vaccine antigens induces durable type 1 and type 2 T-helper immune responses. Zhang Y; Qiu J; Zhou Y; Farhangfar F; Hester J; Lin AY; Decker WK Vaccine; 2008 Jan; 26(5):614-22. PubMed ID: 18166249 [TBL] [Abstract][Full Text] [Related]
10. Nasal immunization with the mixture of PA63, LF, and a PGA conjugate induced strong antibody responses against all three antigens. Sloat BR; Shaker DS; Le UM; Cui Z FEMS Immunol Med Microbiol; 2008 Mar; 52(2):169-79. PubMed ID: 18194342 [TBL] [Abstract][Full Text] [Related]
11. Comparison of YopE and YopT activities in counteracting host signalling responses to Yersinia pseudotuberculosis infection. Viboud GI; Mejía E; Bliska JB Cell Microbiol; 2006 Sep; 8(9):1504-15. PubMed ID: 16922868 [TBL] [Abstract][Full Text] [Related]
12. How the immune system achieves self-nonself discrimination during adaptive immunity. Jiang H; Chess L Adv Immunol; 2009; 102():95-133. PubMed ID: 19477320 [TBL] [Abstract][Full Text] [Related]
13. Biochemical functions of Yersinia type III effectors. Shao F Curr Opin Microbiol; 2008 Feb; 11(1):21-9. PubMed ID: 18299249 [TBL] [Abstract][Full Text] [Related]
14. Modulation of dendritic cell differentiation and function by YopJ of Yersinia pestis. Lindner I; Torruellas-Garcia J; Kolonias D; Carlson LM; Tolba KA; Plano GV; Lee KP Eur J Immunol; 2007 Sep; 37(9):2450-62. PubMed ID: 17705129 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the ability of N-terminal fragment of lethal factor of Bacillus anthracis for delivery of Mycobacterium T cell antigen ESAT-6 into cytosol of antigen presenting cells to elicit effective cytotoxic T lymphocyte response. Chandra S; Kaur M; Midha S; Bhatnagar R; Banerjee-Bhatnagar N Biochem Biophys Res Commun; 2006 Dec; 351(3):702-7. PubMed ID: 17084814 [TBL] [Abstract][Full Text] [Related]
16. Protection against Yersinia pseudotuberculosis infection conferred by a Lactococcus lactis mucosal delivery vector secreting LcrV. Daniel C; Sebbane F; Poiret S; Goudercourt D; Dewulf J; Mullet C; Simonet M; Pot B Vaccine; 2009 Feb; 27(8):1141-4. PubMed ID: 19135495 [TBL] [Abstract][Full Text] [Related]
17. Functions of the Yersinia effector proteins in inhibiting host immune responses. Navarro L; Alto NM; Dixon JE Curr Opin Microbiol; 2005 Feb; 8(1):21-7. PubMed ID: 15694853 [TBL] [Abstract][Full Text] [Related]