BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 15699182)

  • 1. Catalytic mechanism of Escherichia coli ribonuclease III: kinetic and inhibitor evidence for the involvement of two magnesium ions in RNA phosphodiester hydrolysis.
    Sun W; Pertzev A; Nicholson AW
    Nucleic Acids Res; 2005; 33(3):807-15. PubMed ID: 15699182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of action of Escherichia coli ribonuclease III. Stringent chemical requirement for the glutamic acid 117 side chain and Mn2+ rescue of the Glu117Asp mutant.
    Sun W; Nicholson AW
    Biochemistry; 2001 Apr; 40(16):5102-10. PubMed ID: 11305928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of metal ions in the hydrolysis reaction catalyzed by RNase P RNA from Bacillus subtilis.
    Warnecke JM; Held R; Busch S; Hartmann RK
    J Mol Biol; 1999 Jul; 290(2):433-45. PubMed ID: 10390342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterodimer-based analysis of subunit and domain contributions to double-stranded RNA processing by Escherichia coli RNase III in vitro.
    Meng W; Nicholson AW
    Biochem J; 2008 Feb; 410(1):39-48. PubMed ID: 17953512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pre-steady-state and stopped-flow fluorescence analysis of Escherichia coli ribonuclease III: insights into mechanism and conformational changes associated with binding and catalysis.
    Campbell FE; Cassano AG; Anderson VE; Harris ME
    J Mol Biol; 2002 Mar; 317(1):21-40. PubMed ID: 11916377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational analysis of the nuclease domain of Escherichia coli ribonuclease III. Identification of conserved acidic residues that are important for catalytic function in vitro.
    Sun W; Li G; Nicholson AW
    Biochemistry; 2004 Oct; 43(41):13054-62. PubMed ID: 15476399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manganese ions induce miscleavage in the Escherichia coli RNase P RNA-catalyzed reaction.
    Brännvall M; Kirsebom LA
    J Mol Biol; 1999 Sep; 292(1):53-63. PubMed ID: 10493856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribonuclease P catalysis requires Mg2+ coordinated to the pro-RP oxygen of the scissile bond.
    Chen Y; Li X; Gegenheimer P
    Biochemistry; 1997 Mar; 36(9):2425-38. PubMed ID: 9054547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme.
    Legler PM; Lee HC; Peisach J; Mildvan AS
    Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring the structure of Escherichia coli RNase P RNA in the presence of various divalent metal ions.
    Brännvall M; Mikkelsen NE; Kirsebom LA
    Nucleic Acids Res; 2001 Apr; 29(7):1426-32. PubMed ID: 11266542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NAIM and site-specific functional group modification analysis of RNase P RNA: magnesium dependent structure within the conserved P1-P4 multihelix junction contributes to catalysis.
    Kaye NM; Christian EL; Harris ME
    Biochemistry; 2002 Apr; 41(14):4533-45. PubMed ID: 11926814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining the enzyme binding domain of a ribonuclease III processing signal. Ethylation interference and hydroxyl radical footprinting using catalytically inactive RNase III mutants.
    Li H; Nicholson AW
    EMBO J; 1996 Mar; 15(6):1421-33. PubMed ID: 8635475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-metal ion mechanism of RNA cleavage by HIV RNase H and mechanism-based design of selective HIV RNase H inhibitors.
    Klumpp K; Hang JQ; Rajendran S; Yang Y; Derosier A; Wong Kai In P; Overton H; Parkes KE; Cammack N; Martin JA
    Nucleic Acids Res; 2003 Dec; 31(23):6852-9. PubMed ID: 14627818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on Escherichia coli RNase P RNA with Zn2+ as the catalytic cofactor.
    Cuzic S; Hartmann RK
    Nucleic Acids Res; 2005; 33(8):2464-74. PubMed ID: 15867194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the Mg2+ ion in the Escherichia coli ribonuclease HI reaction.
    Uchiyama Y; Iwai S; Ueno Y; Ikehara M; Ohtsuka E
    J Biochem; 1994 Dec; 116(6):1322-9. PubMed ID: 7706224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A stepwise model for double-stranded RNA processing by ribonuclease III.
    Gan J; Shaw G; Tropea JE; Waugh DS; Court DL; Ji X
    Mol Microbiol; 2008 Jan; 67(1):143-54. PubMed ID: 18047582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of RNA sequence determinants and antideterminants of processing reactivity for a minimal substrate of Escherichia coli ribonuclease III.
    Pertzev AV; Nicholson AW
    Nucleic Acids Res; 2006; 34(13):3708-21. PubMed ID: 16896014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the ternary complex of ribonuclease HI:RNA/DNA hybrid:metal ions by ESI mass spectrometry.
    Ando T; Jongruja N; Okumura N; Morikawa K; Kanaya S; Takao T
    J Biol Chem; 2021; 296():100462. PubMed ID: 33639158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribonuclease III cleavage of a bacteriophage T7 processing signal. Divalent cation specificity, and specific anion effects.
    Li HL; Chelladurai BS; Zhang K; Nicholson AW
    Nucleic Acids Res; 1993 Apr; 21(8):1919-25. PubMed ID: 8493105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethidium-dependent uncoupling of substrate binding and cleavage by Escherichia coli ribonuclease III.
    Calin-Jageman I; Amarasinghe AK; Nicholson AW
    Nucleic Acids Res; 2001 May; 29(9):1915-25. PubMed ID: 11328875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.