BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 15699185)

  • 1. Diversity within the Campylobacter jejuni type I restriction-modification loci.
    Miller WG; Pearson BM; Wells JM; Parker CT; Kapitonov VV; Mandrell RE
    Microbiology (Reading); 2005 Feb; 151(Pt 2):337-351. PubMed ID: 15699185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hsd loci of Mycoplasma pulmonis: organization, rearrangements and expression of genes.
    Sitaraman R; Dybvig K
    Mol Microbiol; 1997 Oct; 26(1):109-20. PubMed ID: 9383194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of type I restriction modification systems in the Neisseriaceae: genetic organization and properties of the gene products.
    Piekarowicz A; Kłyz A; Kwiatek A; Stein DC
    Mol Microbiol; 2001 Sep; 41(5):1199-210. PubMed ID: 11555298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Type I restriction-modification loci reveal high allelic diversity in clinical Helicobacter pylori isolates.
    Andres S; Skoglund A; Nilsson C; Krabbe M; Björkholm B; Engstrand L
    Helicobacter; 2010 Apr; 15(2):114-25. PubMed ID: 20402814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conservation of motifs within the unusually variable polypeptide sequences of type I restriction and modification enzymes.
    Murray NE; Daniel AS; Cowan GM; Sharp PM
    Mol Microbiol; 1993 Jul; 9(1):133-43. PubMed ID: 8412658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Cotransformation Method To Identify a Restriction-Modification Enzyme That Reduces Conjugation Efficiency in Campylobacter jejuni.
    Zeng X; Wu Z; Zhang Q; Lin J
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30242003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetra-amino-acid tandem repeats are involved in HsdS complementation in type IC restriction-modification systems.
    Adamczyk-Popławska M; Kondrzycka A; Urbanek K; Piekarowicz A
    Microbiology (Reading); 2003 Nov; 149(Pt 11):3311-3319. PubMed ID: 14600243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The EcoDXX1 restriction and modification system: cloning the genes and homology to type I restriction and modification systems.
    Skrzypek E; Piekarowicz A
    Plasmid; 1989 May; 21(3):195-204. PubMed ID: 2550978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The restriction-modification system of Pasteurella haemolytica is a member of a new family of type I enzymes.
    Highlander SK; Garza O
    Gene; 1996 Oct; 178(1-2):89-96. PubMed ID: 8921897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of an EcoR124I restriction-modification enzyme produced from a deleted form of the DNA-binding subunit, which results in a novel DNA specificity.
    Abadjieva A; Scarlett G; Janscák P; Dutta CF; Firman K
    Folia Microbiol (Praha); 2003; 48(3):319-28. PubMed ID: 12879741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of recA mutation on the expression of EcoKI and EcoR124I hsd genes cloned in a multicopy plasmid.
    Hubácek J; Holubová I; Weiserová M
    Folia Microbiol (Praha); 1998; 43(4):353-9. PubMed ID: 9821288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KpnBI is the prototype of a new family (IE) of bacterial type I restriction-modification system.
    Chin V; Valinluck V; Magaki S; Ryu J
    Nucleic Acids Res; 2004 Oct; 32(18):e138. PubMed ID: 15475385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Campylobacter jejuni ATCC 43431-specific genes by whole microbial genome comparisons.
    Poly F; Threadgill D; Stintzi A
    J Bacteriol; 2004 Jul; 186(14):4781-95. PubMed ID: 15231810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EcoA and EcoE: alternatives to the EcoK family of type I restriction and modification systems of Escherichia coli.
    Fuller-Pace FV; Cowan GM; Murray NE
    J Mol Biol; 1985 Nov; 186(1):65-75. PubMed ID: 3001317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allelic diversity and recombination in Campylobacter jejuni.
    Suerbaum S; Lohrengel M; Sonnevend A; Ruberg F; Kist M
    J Bacteriol; 2001 Apr; 183(8):2553-9. PubMed ID: 11274115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The type IC hsd loci of the enterobacteria are flanked by DNA with high homology to the phage P1 genome: implications for the evolution and spread of DNA restriction systems.
    Tyndall C; Lehnherr H; Sandmeier U; Kulik E; Bickle TA
    Mol Microbiol; 1997 Feb; 23(4):729-36. PubMed ID: 9157244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA sequence repeats identify numerous Type I restriction-modification systems that are potential epigenetic regulators controlling phase-variable regulons; phasevarions.
    Atack JM; Guo C; Yang L; Zhou Y; Jennings MP
    FASEB J; 2020 Jan; 34(1):1038-1051. PubMed ID: 31914596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A third family of allelic hsd genes in Salmonella enterica: sequence comparisons with related proteins identify conserved regions implicated in restriction of DNA.
    Titheradge AJ; Ternent D; Murray NE
    Mol Microbiol; 1996 Nov; 22(3):437-47. PubMed ID: 8939428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basis for changes in DNA recognition by the EcoR124 and EcoR124/3 type I DNA restriction and modification enzymes.
    Price C; Lingner J; Bickle TA; Firman K; Glover SW
    J Mol Biol; 1989 Jan; 205(1):115-25. PubMed ID: 2784505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The DNA recognition subunit of the type IB restriction-modification enzyme EcoAI tolerates circular permutions of its polypeptide chain.
    Janscak P; Bickle TA
    J Mol Biol; 1998 Dec; 284(4):937-48. PubMed ID: 9837717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.