BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 1569948)

  • 1. The transport of proteins into the nucleus requires the 70-kilodalton heat shock protein or its cytosolic cognate.
    Shi Y; Thomas JO
    Mol Cell Biol; 1992 May; 12(5):2186-92. PubMed ID: 1569948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 70-kDa heat-shock cognate protein colocalizes with karyophilic proteins into the nucleus during their transport in vitro.
    Okuno Y; Imamoto N; Yoneda Y
    Exp Cell Res; 1993 May; 206(1):134-42. PubMed ID: 8482354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibodies against 70-kD heat shock cognate protein inhibit mediated nuclear import of karyophilic proteins.
    Imamoto N; Matsuoka Y; Kurihara T; Kohno K; Miyagi M; Sakiyama F; Okada Y; Tsunasawa S; Yoneda Y
    J Cell Biol; 1992 Dec; 119(5):1047-61. PubMed ID: 1332978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of heat shock cognate 70 protein in import of ornithine transcarbamylase precursor into mammalian mitochondria.
    Terada K; Ohtsuka K; Imamoto N; Yoneda Y; Mori M
    Mol Cell Biol; 1995 Jul; 15(7):3708-13. PubMed ID: 7791777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aginactin, an agonist-regulated F-actin capping activity is associated with an Hsc70 in Dictyostelium.
    Eddy RJ; Sauterer RA; Condeelis JS
    J Biol Chem; 1993 Nov; 268(31):23267-74. PubMed ID: 8226849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of carboxyl-terminal deletions on the nuclear transport rate of rat hsc70.
    Mandell RB; Feldherr CM
    Exp Cell Res; 1992 Jan; 198(1):164-9. PubMed ID: 1727051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The disappearance of an hsc70 species in mung bean seed during germination: purification and characterization of the protein.
    Wang C; Lin BL
    Plant Mol Biol; 1993 Jan; 21(2):317-29. PubMed ID: 8425059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The heat shock cognate protein from Dictyostelium affects actin polymerization through interaction with the actin-binding protein cap32/34.
    Haus U; Trommler P; Fisher PR; Hartmann H; Lottspeich F; Noegel AA; Schleicher M
    EMBO J; 1993 Oct; 12(10):3763-71. PubMed ID: 8404847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human Fas-associated factor 1 interacts with heat shock protein 70 and negatively regulates chaperone activity.
    Kim HJ; Song EJ; Lee YS; Kim E; Lee KJ
    J Biol Chem; 2005 Mar; 280(9):8125-33. PubMed ID: 15596450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification of complexes of nuclear oncogene p53 with rat and Escherichia coli heat shock proteins: in vitro dissociation of hsc70 and dnaK from murine p53 by ATP.
    Clarke CF; Cheng K; Frey AB; Stein R; Hinds PW; Levine AJ
    Mol Cell Biol; 1988 Mar; 8(3):1206-15. PubMed ID: 3285177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of a DnaJ-like protein in rats: the C-terminal 10-kDa domain of hsc70 is not essential for stimulating the ATP-hydrolytic activity of hsc70 by a DnaJ-like protein.
    Leng CH; Brodsky JL; Wang C
    Protein Sci; 1998 May; 7(5):1186-94. PubMed ID: 9605323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of two HSP70-related Xenopus oocyte proteins that are capable of recycling across the nuclear envelope.
    Mandell RB; Feldherr CM
    J Cell Biol; 1990 Nov; 111(5 Pt 1):1775-83. PubMed ID: 2229173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unfolded proteins stimulate molecular chaperone Hsc70 ATPase by accelerating ADP/ATP exchange.
    Sadis S; Hightower LE
    Biochemistry; 1992 Oct; 31(39):9406-12. PubMed ID: 1356434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat stress induces hsc70/nuclear topoisomerase I complex formation in vivo: evidence for hsc70-mediated, ATP-independent reactivation in vitro.
    Ciavarra RP; Goldman C; Wen KK; Tedeschi B; Castora FJ
    Proc Natl Acad Sci U S A; 1994 Mar; 91(5):1751-5. PubMed ID: 8127877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of the Hsp90 cochaperone cyclophilin 40 with Hsc70.
    Carrello A; Allan RK; Morgan SL; Owen BA; Mok D; Ward BK; Minchin RF; Toft DO; Ratajczak T
    Cell Stress Chaperones; 2004; 9(2):167-81. PubMed ID: 15497503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning of a cDNA encoding a Xenopus laevis 70-kDa heat shock cognate protein, hsc70.II.
    Ali A; Salter-Cid L; Flajnik MJ; Heikkila JJ
    Biochim Biophys Acta; 1996 Dec; 1309(3):174-8. PubMed ID: 8982250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of cytosolic peroxisome proliferator binding protein as a member of the heat shock protein HSP70 family.
    Alvares K; Carrillo A; Yuan PM; Kawano H; Morimoto RI; Reddy JK
    Proc Natl Acad Sci U S A; 1990 Jul; 87(14):5293-7. PubMed ID: 2371272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural organization of the spinach endoplasmic reticulum-luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat-shock genes during cold acclimation.
    Anderson JV; Li QB; Haskell DW; Guy CL
    Plant Physiol; 1994 Apr; 104(4):1359-70. PubMed ID: 8016266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions.
    Ballinger CA; Connell P; Wu Y; Hu Z; Thompson LJ; Yin LY; Patterson C
    Mol Cell Biol; 1999 Jun; 19(6):4535-45. PubMed ID: 10330192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for the existence of a novel mechanism for the nuclear import of Hsc70.
    Lamian V; Small GM; Feldherr CM
    Exp Cell Res; 1996 Oct; 228(1):84-91. PubMed ID: 8892974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.