BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

730 related articles for article (PubMed ID: 15699629)

  • 1. Interaction in vitro of type III intermediate filament proteins with higher order structures of single-stranded DNA, particularly with G-quadruplex DNA.
    Tolstonog GV; Li G; Shoeman RL; Traub P
    DNA Cell Biol; 2005 Feb; 24(2):85-110. PubMed ID: 15699629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction in vitro of type III intermediate filament proteins with Z-DNA and B-Z-DNA junctions.
    Li G; Tolstonog GV; Traub P
    DNA Cell Biol; 2003 Mar; 22(3):141-69. PubMed ID: 12804114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction in vitro of type III intermediate filament proteins with triplex DNA.
    Li G; Tolstonog GV; Traub P
    DNA Cell Biol; 2002 Mar; 21(3):163-88. PubMed ID: 12015895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Type III intermediate filament proteins interact with four-way junction DNA and facilitate its cleavage by the junction-resolving enzyme T7 endonuclease I.
    Li G; Tolstonog GV; Sabasch M; Traub P
    DNA Cell Biol; 2003 Apr; 22(4):261-91. PubMed ID: 12823903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermediate filaments reconstituted from vimentin, desmin, and glial fibrillary acidic protein selectively bind repetitive and mobile DNA sequences from a mixture of mouse genomic DNA fragments.
    Tolstonog GV; Wang X; Shoeman R; Traub P
    DNA Cell Biol; 2000 Nov; 19(11):647-77. PubMed ID: 11098216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction in vitro of type III intermediate filament proteins with supercoiled plasmid DNA and modulation of eukaryotic DNA topoisomerase I and II activities.
    Li G; Tolstonog GV; Sabasch M; Traub P
    DNA Cell Biol; 2002 Oct; 21(10):743-69. PubMed ID: 12443544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective binding of specific mouse genomic DNA fragments by mouse vimentin filaments in vitro.
    Wang X; Tolstonog G; Shoeman RL; Traub P
    DNA Cell Biol; 1996 Mar; 15(3):209-25. PubMed ID: 8634150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermediate filaments and gene regulation.
    Traub P
    Physiol Chem Phys Med NMR; 1995; 27(4):377-400. PubMed ID: 8768794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel G-triplexes and G-hairpins as potential transitory ensembles in the folding of parallel-stranded DNA G-Quadruplexes.
    Stadlbauer P; Kührová P; Vicherek L; Banáš P; Otyepka M; Trantírek L; Šponer J
    Nucleic Acids Res; 2019 Aug; 47(14):7276-7293. PubMed ID: 31318975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the nucleic acid-binding activities of the isolated amino-terminal head domain of the intermediate filament protein vimentin reveals its close relationship to the DNA-binding regions of some prokaryotic single-stranded DNA-binding proteins.
    Traub P; Mothes E; Shoeman R; Kühn S; Scherbarth A
    J Mol Biol; 1992 Nov; 228(1):41-57. PubMed ID: 1447793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of SDS-stable complexes of the intermediate filament protein vimentin with repetitive, mobile, nuclear matrix attachment region, and mitochondrial DNA sequence elements from cultured mouse and human fibroblasts.
    Tolstonog GV; Mothes E; Shoeman RL; Traub P
    DNA Cell Biol; 2001 Sep; 20(9):531-54. PubMed ID: 11747605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rice proteins that bind single-stranded G-rich telomere DNA.
    Kim JH; Kim WT; Chung IK
    Plant Mol Biol; 1998 Mar; 36(5):661-72. PubMed ID: 9526498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation and characterization of homo and hetero-oligomers of the intermediate filament proteins desmin and vimentin.
    Traub P; Kühn S; Grüb S
    J Mol Biol; 1993 Apr; 230(3):837-56. PubMed ID: 8478938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ff gene 5 single-stranded DNA-binding protein assembles on nucleotides constrained by a DNA hairpin.
    Wen JD; Gray DM
    Biochemistry; 2004 Mar; 43(9):2622-34. PubMed ID: 14992600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel G-Quadruplexes Formed by Guanine-Rich Microsatellite Repeats Inhibit Human Topoisomerase I.
    Ogloblina AM; Bannikova VA; Khristich AN; Oretskaya TS; Yakubovskaya MG; Dolinnaya NG
    Biochemistry (Mosc); 2015 Aug; 80(8):1026-38. PubMed ID: 26547071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sole and stable RNA duplexes of G-rich sequences located in the 5'-untranslated region of protooncogenes.
    Saxena S; Miyoshi D; Sugimoto N
    Biochemistry; 2010 Aug; 49(33):7190-201. PubMed ID: 20672842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleic acid-binding activities of the intermediate filament subunit proteins desmin and glial fibrillary acidic protein.
    Vorgias CE; Traub P
    Z Naturforsch C J Biosci; 1986; 41(9-10):897-909. PubMed ID: 2432735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human Pif1 helicase is a G-quadruplex DNA-binding protein with G-quadruplex DNA-unwinding activity.
    Sanders CM
    Biochem J; 2010 Aug; 430(1):119-28. PubMed ID: 20524933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR-Based model of a telomerase-inhibiting compound bound to G-quadruplex DNA.
    Fedoroff OY; Salazar M; Han H; Chemeris VV; Kerwin SM; Hurley LH
    Biochemistry; 1998 Sep; 37(36):12367-74. PubMed ID: 9730808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms for maintenance of G-rich short tandem repeats capable of adopting G4 DNA structures.
    Nakagama H; Higuchi K; Tanaka E; Tsuchiya N; Nakashima K; Katahira M; Fukuda H
    Mutat Res; 2006 Jun; 598(1-2):120-31. PubMed ID: 16513142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.