These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
472 related articles for article (PubMed ID: 15700054)
1. Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Banks CE; Davies TJ; Wildgoose GG; Compton RG Chem Commun (Camb); 2005 Feb; (7):829-41. PubMed ID: 15700054 [TBL] [Abstract][Full Text] [Related]
2. Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study. Banks CE; Compton RG Analyst; 2005 Sep; 130(9):1232-9. PubMed ID: 16096667 [TBL] [Abstract][Full Text] [Related]
3. Voltammetric studies of sumatriptan on the surface of pyrolytic graphite electrode modified with multi-walled carbon nanotubes decorated with silver nanoparticles. Ghalkhani M; Shahrokhian S; Ghorbani-Bidkorbeh F Talanta; 2009 Nov; 80(1):31-8. PubMed ID: 19782189 [TBL] [Abstract][Full Text] [Related]
4. Apparent 'electrocatalytic' activity of multiwalled carbon nanotubes in the detection of the anaesthetic halothane: occluded copper nanoparticles. Dai X; Wildgoose GG; Compton RG Analyst; 2006 Aug; 131(8):901-6. PubMed ID: 17028723 [TBL] [Abstract][Full Text] [Related]
5. The advantage of using carbon nanotubes compared with edge plane pyrolytic graphite as an electrode material for oxidase-based biosensors. Kurusu F; Tsunoda H; Saito A; Tomita A; Kadota A; Kayahara N; Karube I; Gotoh M Analyst; 2006 Dec; 131(12):1292-8. PubMed ID: 17124536 [TBL] [Abstract][Full Text] [Related]
6. Enhancing the electrochemical response of myoglobin with carbon nanotube electrodes. Esplandiu MJ; Pacios M; Cyganek L; Bartroli J; del Valle M Nanotechnology; 2009 Sep; 20(35):355502. PubMed ID: 19671979 [TBL] [Abstract][Full Text] [Related]
7. Accelerated direct electrochemistry of hemoglobin based on hemoglobin-carbon nanotube (Hb-CNT) assembly. Zhang R; Wang X; Shiu KK J Colloid Interface Sci; 2007 Dec; 316(2):517-22. PubMed ID: 17904150 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modified with platinum. Fei S; Chen J; Yao S; Deng G; He D; Kuang Y Anal Biochem; 2005 Apr; 339(1):29-35. PubMed ID: 15766706 [TBL] [Abstract][Full Text] [Related]
11. Graphene versus carbon nanotubes for chemical sensor and fuel cell applications. Kauffman DR; Star A Analyst; 2010 Nov; 135(11):2790-7. PubMed ID: 20733998 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical DNA biosensor based on conducting polyaniline nanotube array. Chang H; Yuan Y; Shi N; Guan Y Anal Chem; 2007 Jul; 79(13):5111-5. PubMed ID: 17530821 [TBL] [Abstract][Full Text] [Related]
14. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Zhou M; Zhai Y; Dong S Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529 [TBL] [Abstract][Full Text] [Related]
15. Effect of single walled carbon nanotube-cetyltrimethyl ammonium bromide nanocomposite film modified pyrolytic graphite on the determination of betamethasone in human urine. Goyal RN; Bishnoi S Colloids Surf B Biointerfaces; 2010 Jun; 77(2):200-5. PubMed ID: 20172696 [TBL] [Abstract][Full Text] [Related]