These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
472 related articles for article (PubMed ID: 15700054)
21. Electrochemical parameters of ethamsylate at multi-walled carbon nanotube modified glassy carbon electrodes. Wang SF; Xu Q Bioelectrochemistry; 2007 May; 70(2):296-300. PubMed ID: 16720109 [TBL] [Abstract][Full Text] [Related]
22. Theoretical study on the electrochemical behavior of norepinephrine at Nafion multi-walled carbon nanotubes modified pyrolytic graphite electrode. Song Y Spectrochim Acta A Mol Biomol Spectrosc; 2007 Aug; 67(5):1169-77. PubMed ID: 17141559 [TBL] [Abstract][Full Text] [Related]
23. Manufacture and evaluation of carbon nanotube modified screen-printed electrodes as electrochemical tools. Fanjul-Bolado P; Queipo P; Lamas-Ardisana PJ; Costa-García A Talanta; 2007 Dec; 74(3):427-33. PubMed ID: 18371659 [TBL] [Abstract][Full Text] [Related]
24. Electrochemical catalysis and thermal stability characterization of laccase-carbon nanotubes-ionic liquid nanocomposite modified graphite electrode. Liu Y; Huang L; Dong S Biosens Bioelectron; 2007 Aug; 23(1):35-41. PubMed ID: 17459687 [TBL] [Abstract][Full Text] [Related]
25. Graphene oxide sheet-prussian blue nanocomposites: green synthesis and their extraordinary electrochemical properties. Liu XW; Yao ZJ; Wang YF; Wei XW Colloids Surf B Biointerfaces; 2010 Dec; 81(2):508-12. PubMed ID: 20719478 [TBL] [Abstract][Full Text] [Related]
26. Electrocatalysis of reduced L-glutathione oxidation by iron(III) tetra-(N-methyl-4-pyridyl)-porphyrin (FeT4MPyP) adsorbed on multi-walled carbon nanotubes. Luz RC; Damos FS; Tanaka AA; Kubota LT; Gushikem Y Talanta; 2008 Sep; 76(5):1097-104. PubMed ID: 18761161 [TBL] [Abstract][Full Text] [Related]
27. Electrosorption of Os(III)-complex at single-wall carbon nanotubes immobilized on a glassy carbon electrode: application to nanomolar detection of bromate, periodate and iodate. Salimi A; Kavosi B; Babaei A; Hallaj R Anal Chim Acta; 2008 Jun; 618(1):43-53. PubMed ID: 18501244 [TBL] [Abstract][Full Text] [Related]
28. A comparative study on the lithium-ion storage performances of carbon nanotubes and tube-in-tube carbon nanotubes. Xu YJ; Liu X; Cui G; Zhu B; Weinberg G; Schlögl R; Maier J; Su DS ChemSusChem; 2010 Mar; 3(3):343-9. PubMed ID: 20029929 [TBL] [Abstract][Full Text] [Related]
29. Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode. Chen X; Chen J; Deng C; Xiao C; Yang Y; Nie Z; Yao S Talanta; 2008 Aug; 76(4):763-7. PubMed ID: 18656655 [TBL] [Abstract][Full Text] [Related]
30. Direct electron transfer reactions between human ceruloplasmin and electrodes. Haberska K; Vaz-Domínguez C; De Lacey AL; Dagys M; Reimann CT; Shleev S Bioelectrochemistry; 2009 Sep; 76(1-2):34-41. PubMed ID: 19535300 [TBL] [Abstract][Full Text] [Related]
31. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors. Zhou M; Shang L; Li B; Huang L; Dong S Biosens Bioelectron; 2008 Nov; 24(3):442-7. PubMed ID: 18541421 [TBL] [Abstract][Full Text] [Related]
32. Electrochemical oxidation of guanine: electrode reaction mechanism and tailoring carbon electrode surfaces to switch between adsorptive and diffusional responses. Li Q; Batchelor-McAuley C; Compton RG J Phys Chem B; 2010 Jun; 114(21):7423-8. PubMed ID: 20446746 [TBL] [Abstract][Full Text] [Related]
34. Highly dispersed Pt nanoparticles immobilized on 1,4-benzenediamine-modified multi-walled carbon nanotube for methanol oxidation. Cui SK; Guo DJ J Colloid Interface Sci; 2009 May; 333(1):300-3. PubMed ID: 19232631 [TBL] [Abstract][Full Text] [Related]
35. Carbon-nanotube-enhanced direct electron-transfer reactivity of hemoglobin immobilized on polyurethane elastomer film. Liu S; Lin B; Yang X; Zhang Q J Phys Chem B; 2007 Feb; 111(5):1182-8. PubMed ID: 17266273 [TBL] [Abstract][Full Text] [Related]
36. Rational attachment of synthetic triptycene orthoquinone onto carbon nanotubes for electrocatalysis and sensitive detection of thiols. Gong K; Zhu X; Zhao R; Xiong S; Mao L; Chen C Anal Chem; 2005 Dec; 77(24):8158-65. PubMed ID: 16351170 [TBL] [Abstract][Full Text] [Related]
37. A pyrene-substituted tris(bipyridine)osmium(II) complex as a versatile redox probe for characterizing and functionalizing carbon nanotube- and graphene-based electrodes. Le Goff A; Reuillard B; Cosnier S Langmuir; 2013 Jul; 29(27):8736-42. PubMed ID: 23767958 [TBL] [Abstract][Full Text] [Related]
38. Synthesis and characterization of nucleobase-carbon nanotube hybrids. Singh P; Kumar J; Toma FM; Raya J; Prato M; Fabre B; Verma S; Bianco A J Am Chem Soc; 2009 Sep; 131(37):13555-62. PubMed ID: 19673527 [TBL] [Abstract][Full Text] [Related]
39. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Cheng Q; Tang J; Ma J; Zhang H; Shinya N; Qin LC Phys Chem Chem Phys; 2011 Oct; 13(39):17615-24. PubMed ID: 21887427 [TBL] [Abstract][Full Text] [Related]
40. Steam purification for the removal of graphitic shells coating catalytic particles and the shortening of single-walled carbon nanotubes. Ballesteros B; Tobias G; Shao L; Pellicer E; Nogués J; Mendoza E; Green ML Small; 2008 Sep; 4(9):1501-6. PubMed ID: 18702121 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]