These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 15700149)
1. A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Aitken KS; Jackson PA; McIntyre CL Theor Appl Genet; 2005 Mar; 110(5):789-801. PubMed ID: 15700149 [TBL] [Abstract][Full Text] [Related]
2. Construction of a genetic linkage map for Saccharum officinarum incorporating both simplex and duplex markers to increase genome coverage. Aitken KS; Jackson PA; McIntyre CL Genome; 2007 Aug; 50(8):742-56. PubMed ID: 17893734 [TBL] [Abstract][Full Text] [Related]
3. Genetic analysis of the sugarcane (Saccharum spp.) cultivar 'LCP 85-384'. I. Linkage mapping using AFLP, SSR, and TRAP markers. Andru S; Pan YB; Thongthawee S; Burner DM; Kimbeng CA Theor Appl Genet; 2011 Jun; 123(1):77-93. PubMed ID: 21472411 [TBL] [Abstract][Full Text] [Related]
4. A comprehensive genetic map of sugarcane that provides enhanced map coverage and integrates high-throughput Diversity Array Technology (DArT) markers. Aitken KS; McNeil MD; Hermann S; Bundock PC; Kilian A; Heller-Uszynska K; Henry RJ; Li J BMC Genomics; 2014 Feb; 15(1):152. PubMed ID: 24564784 [TBL] [Abstract][Full Text] [Related]
5. DNA Marker Transmission and Linkage Analysis in Populations Derived from a Sugarcane (Saccharum spp.) x Erianthus arundinaceus Hybrid. Chen JW; Lao FY; Chen XW; Deng HH; Liu R; He HY; Fu C; Chen YS; Liu FY; Li QW; Jackson P; Aitken K PLoS One; 2015; 10(6):e0128865. PubMed ID: 26053338 [TBL] [Abstract][Full Text] [Related]
6. Quantitative trait loci identified for sugar related traits in a sugarcane (Saccharum spp.) cultivar x Saccharum officinarum population. Aitken KS; Jackson PA; McIntyre CL Theor Appl Genet; 2006 May; 112(7):1306-17. PubMed ID: 16508765 [TBL] [Abstract][Full Text] [Related]
8. Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. Garcia AA; Kido EA; Meza AN; Souza HM; Pinto LR; Pastina MM; Leite CS; Silva JA; Ulian EC; Figueira A; Souza AP Theor Appl Genet; 2006 Jan; 112(2):298-314. PubMed ID: 16307229 [TBL] [Abstract][Full Text] [Related]
9. Differential chromosome pairing affinities at meiosis in polyploid sugarcane revealed by molecular markers. Jannoo N; Grivet L; David J; D'Hont A; Glaszmann JC Heredity (Edinb); 2004 Nov; 93(5):460-7. PubMed ID: 15292909 [TBL] [Abstract][Full Text] [Related]
10. Genetic variability among the chloroplast genomes of sugarcane (Saccharum spp) and its wild progenitor species Saccharum spontaneum L. Zhu JR; Zhou H; Pan YB; Lu X Genet Mol Res; 2014 Jan; 13(2):3037-47. PubMed ID: 24615073 [TBL] [Abstract][Full Text] [Related]
11. SSR-based linkage map with new markers using an intraspecific population of common wheat. Torada A; Koike M; Mochida K; Ogihara Y Theor Appl Genet; 2006 Apr; 112(6):1042-51. PubMed ID: 16450184 [TBL] [Abstract][Full Text] [Related]
12. Genetic mapping in sugarcane, a high polyploid, using bi-parental progeny: identification of a gene controlling stalk colour and a new rust resistance gene. Raboin LM; Oliveira KM; Lecunff L; Telismart H; Roques D; Butterfield M; Hoarau JY; D'Hont A Theor Appl Genet; 2006 May; 112(7):1382-91. PubMed ID: 16552554 [TBL] [Abstract][Full Text] [Related]
13. Inference of subgenomic origin of BACs in an interspecific hybrid sugarcane cultivar by overlapping oligonucleotide hybridizations. Kim C; Robertson JS; Paterson AH Genome; 2011 Sep; 54(9):727-37. PubMed ID: 21883018 [TBL] [Abstract][Full Text] [Related]
15. Genetic segregation of microsatellite markers in Saccharum officinarum and S. spontaneum. Edmé SJ; Glynn NG; Comstock JC Heredity (Edinb); 2006 Nov; 97(5):366-75. PubMed ID: 16912699 [TBL] [Abstract][Full Text] [Related]
16. Genome remodelling in three modern S. officinarumxS. spontaneum sugarcane cultivars. Cuadrado A; Acevedo R; Moreno Díaz de la Espina S; Jouve N; de la Torre C J Exp Bot; 2004 Apr; 55(398):847-54. PubMed ID: 14990623 [TBL] [Abstract][Full Text] [Related]
17. An integrated high-density linkage map of soybean with RFLP, SSR, STS, and AFLP markers using A single F2 population. Xia Z; Tsubokura Y; Hoshi M; Hanawa M; Yano C; Okamura K; Ahmed TA; Anai T; Watanabe S; Hayashi M; Kawai T; Hossain KG; Masaki H; Asai K; Yamanaka N; Kubo N; Kadowaki K; Nagamura Y; Yano M; Sasaki T; Harada K DNA Res; 2007 Dec; 14(6):257-69. PubMed ID: 18192280 [TBL] [Abstract][Full Text] [Related]
18. Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. Julier B; Flajoulot S; Barre P; Cardinet G; Santoni S; Huguet T; Huyghe C BMC Plant Biol; 2003 Dec; 3():9. PubMed ID: 14683527 [TBL] [Abstract][Full Text] [Related]
19. Exploitation of pepper EST-SSRs and an SSR-based linkage map. Yi G; Lee JM; Lee S; Choi D; Kim BD Theor Appl Genet; 2006 Dec; 114(1):113-30. PubMed ID: 17047912 [TBL] [Abstract][Full Text] [Related]
20. Generation and mapping of AFLP, SSRs and SNPs in Lycopersicon esculentum. Suliman-Pollatschek S; Kashkush K; Shats H; Hillel J; Lavi U Cell Mol Biol Lett; 2002; 7(2A):583-97. PubMed ID: 12378264 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]