BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 15700172)

  • 1. Length determination of vessel elements in tree trunks used for water and nutrient transport by Fourier transform Raman spectroscopy.
    Ona T; Ohshima J; Adachi K; Yokota S; Yoshizawa N
    Anal Bioanal Chem; 2004 Dec; 380(7-8):958-63. PubMed ID: 15700172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ determination of proportion of cell types in wood by Fourier transform Raman spectroscopy.
    Ona T; Sonoda T; Ito K; Shibata M; Ootake Y; Ohshima J; Yokota S; Yoshizawa N
    Anal Biochem; 1999 Mar; 268(1):43-8. PubMed ID: 10036160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of hot-water-soluble extractive, pentosan and cellulose content of various wood species using FT-NIR spectroscopy.
    He W; Hu H
    Bioresour Technol; 2013 Jul; 140():299-305. PubMed ID: 23711938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring Molecular Strain in Rewetted and Never-Dried Eucalypt Wood with Raman Spectroscopy.
    Guo F; Altaner CM
    Biomacromolecules; 2019 Aug; 20(8):3191-3199. PubMed ID: 31313909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Fourier transform Raman spectroscopy for prediction of bitterness of peptides.
    Kim HO; Li-Chan EC
    Appl Spectrosc; 2006 Nov; 60(11):1297-306. PubMed ID: 17132448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fourier-transform Raman spectroscopic study of a Neolithic waterlogged wood assemblage.
    Petrou M; Edwards HG; Janaway RC; Thompson GB; Wilson AS
    Anal Bioanal Chem; 2009 Dec; 395(7):2131-8. PubMed ID: 19834692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring a bioprocess for ethanol production using FT-MIR and FT-Raman spectroscopy.
    Sivakesava S; Irudayaraj J; Demirci A
    J Ind Microbiol Biotechnol; 2001 Apr; 26(4):185-90. PubMed ID: 11464265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of omega-6 and omega-3 fatty acids in pork adipose tissue with nondestructive Raman and fourier transform infrared spectroscopy.
    Olsen EF; Rukke EO; Egelandsdal B; Isaksson T
    Appl Spectrosc; 2008 Sep; 62(9):968-74. PubMed ID: 18801235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Self-absorption" phenomenon in near-infrared Fourier transform Raman spectroscopy of cellulosic and lignocellulosic materials.
    Agarwal UP; Kawai N
    Appl Spectrosc; 2005 Mar; 59(3):385-8. PubMed ID: 15912594
    [No Abstract]   [Full Text] [Related]  

  • 10. Analysis of milk by FT-Raman spectroscopy.
    Mazurek S; Szostak R; Czaja T; Zachwieja A
    Talanta; 2015 Jun; 138():285-289. PubMed ID: 25863403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of Amazonian fast-growing tree species and wood chemical determination by FTIR and multivariate analysis (PLS-DA, PLS).
    Javier-Astete R; Melo J; Jimenez-Davalos J; Zolla G
    Sci Rep; 2023 May; 13(1):7827. PubMed ID: 37188729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative evaluation by attenuated total reflectance infrared (ATR-FTIR) spectroscopy of the chemical composition of decayed wood preserved in waterlogged conditions.
    Pizzo B; Pecoraro E; Alves A; Macchioni N; Rodrigues JC
    Talanta; 2015 Jan; 131():14-20. PubMed ID: 25281067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical correlation of spectroscopic analysis and enzymatic hydrolysis of poplar samples.
    Laureano-Perez L; Dale BE; Zhu L; O'Dwyer JP; Holtzapple M
    Biotechnol Prog; 2006; 22(3):835-41. PubMed ID: 16739968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemometric evaluation of near infrared, fourier transform infrared, and Raman spectroscopic models for the prediction of nimodipine polymorphs.
    Siddiqui A; Rahman Z; Sayeed VA; Khan MA
    J Pharm Sci; 2013 Nov; 102(11):4024-35. PubMed ID: 23963767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adulteration of diesel/biodiesel blends by vegetable oil as determined by Fourier transform (FT) near infrared spectrometry and FT-Raman spectroscopy.
    Oliveira FC; Brandão CR; Ramalho HF; da Costa LA; Suarez PA; Rubim JC
    Anal Chim Acta; 2007 Mar; 587(2):194-9. PubMed ID: 17386773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of wood density and chemical composition by means of diffuse reflectance mid-infrared Fourier transform (DRIFT-MIR) spectroscopy.
    Nuopponen MH; Birch GM; Sykes RJ; Lee SJ; Stewart D
    J Agric Food Chem; 2006 Jan; 54(1):34-40. PubMed ID: 16390174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral characterization of eucalyptus wood.
    Popescu CM; Popescu MC; Singurel G; Vasile C; Argyropoulos DS; Willfor S
    Appl Spectrosc; 2007 Nov; 61(11):1168-77. PubMed ID: 18028695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FT-MIR and Raman spectroscopy coupled to multivariate analysis for the detection of clenbuterol in murine model.
    Meza-Márquez OG; Gallardo-Velázquez T; Dorantes-Álvarez L; Osorio-Revilla G; de la Rosa Arana JL
    Analyst; 2011 Aug; 136(16):3355-65. PubMed ID: 21709857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Estimation of modulus of elasticity of Eucalyptus pellita wood by near infrared spectroscopy].
    Zhao RJ; Huo XM; Zhang L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Sep; 29(9):2392-5. PubMed ID: 19950636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid prediction of phenolic compounds and antioxidant activity of Sudanese honey using Raman and Fourier transform infrared (FT-IR) spectroscopy.
    Tahir HE; Xiaobo Z; Zhihua L; Jiyong S; Zhai X; Wang S; Mariod AA
    Food Chem; 2017 Jul; 226():202-211. PubMed ID: 28254013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.