BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 15700275)

  • 1. Cellular and network properties of the subiculum in the pilocarpine model of temporal lobe epilepsy.
    Knopp A; Kivi A; Wozny C; Heinemann U; Behr J
    J Comp Neurol; 2005 Mar; 483(4):476-88. PubMed ID: 15700275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of GABAergic neurons in the subiculum and its functional implications in temporal lobe epilepsy.
    Knopp A; Frahm C; Fidzinski P; Witte OW; Behr J
    Brain; 2008 Jun; 131(Pt 6):1516-27. PubMed ID: 18504292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gating of hippocampal output by β-adrenergic receptor activation in the pilocarpine model of epilepsy.
    Grosser S; Hollnagel JO; Gilling KE; Bartsch JC; Heinemann U; Behr J
    Neuroscience; 2015 Feb; 286():325-37. PubMed ID: 25498224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced synaptic excitation-inhibition ratio in hippocampal interneurons of rats with temporal lobe epilepsy.
    Stief F; Zuschratter W; Hartmann K; Schmitz D; Draguhn A
    Eur J Neurosci; 2007 Jan; 25(2):519-28. PubMed ID: 17284194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The subiculum: a potential site of ictogenesis in human temporal lobe epilepsy.
    Wozny C; Knopp A; Lehmann TN; Heinemann U; Behr J
    Epilepsia; 2005; 46 Suppl 5():17-21. PubMed ID: 15987248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subiculum network excitability is increased in a rodent model of temporal lobe epilepsy.
    de Guzman P; Inaba Y; Biagini G; Baldelli E; Mollinari C; Merlo D; Avoli M
    Hippocampus; 2006; 16(10):843-60. PubMed ID: 16897722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavioral and histological assessment of the effect of intermittent feeding in the pilocarpine model of temporal lobe epilepsy.
    Parinejad N; Keshavarzi S; Movahedin M; Raza M
    Epilepsy Res; 2009 Sep; 86(1):54-65. PubMed ID: 19505798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entorhinal cortex entrains epileptiform activity in CA1 in pilocarpine-treated rats.
    Wozny C; Gabriel S; Jandova K; Schulze K; Heinemann U; Behr J
    Neurobiol Dis; 2005 Aug; 19(3):451-60. PubMed ID: 16023587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facilitation of granule cell epileptiform activity by mossy fiber-released zinc in the pilocarpine model of temporal lobe epilepsy.
    Timofeeva O; Nadler JV
    Brain Res; 2006 Mar; 1078(1):227-34. PubMed ID: 16490181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations of hippocampal GAbaergic system contribute to development of spontaneous recurrent seizures in the rat lithium-pilocarpine model of temporal lobe epilepsy.
    André V; Marescaux C; Nehlig A; Fritschy JM
    Hippocampus; 2001; 11(4):452-68. PubMed ID: 11530850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamatergic propagation of GABAergic seizure-like afterdischarge in the hippocampus in vitro.
    Isomura Y; Fujiwara-Tsukamoto Y; Takada M
    J Neurophysiol; 2003 Oct; 90(4):2746-51. PubMed ID: 14534277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of bursting neurons in the CA1 region and the subiculum of the rat hippocampus.
    Jarsky T; Mady R; Kennedy B; Spruston N
    J Comp Neurol; 2008 Feb; 506(4):535-47. PubMed ID: 18067146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective degeneration and synaptic reorganization of hippocampal interneurons in a chronic model of temporal lobe epilepsy.
    Ratté S; Lacaille JC
    Adv Neurol; 2006; 97():69-76. PubMed ID: 16383116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased levels of acidic calponin during dendritic spine plasticity after pilocarpine-induced seizures.
    Ferhat L; Esclapez M; Represa A; Fattoum A; Shirao T; Ben-Ari Y
    Hippocampus; 2003; 13(7):845-58. PubMed ID: 14620880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Persistent sodium current in subicular neurons isolated from patients with temporal lobe epilepsy.
    Vreugdenhil M; Hoogland G; van Veelen CW; Wadman WJ
    Eur J Neurosci; 2004 May; 19(10):2769-78. PubMed ID: 15147310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Doublecortin-positive newly born granule cells of hippocampus have abnormal apical dendritic morphology in the pilocarpine model of temporal lobe epilepsy.
    Arisi GM; Garcia-Cairasco N
    Brain Res; 2007 Aug; 1165():126-34. PubMed ID: 17662262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered inhibition in lateral amygdala networks in a rat model of temporal lobe epilepsy.
    Benini R; Avoli M
    J Neurophysiol; 2006 Apr; 95(4):2143-54. PubMed ID: 16381802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initiation of network bursts by Ca2+-dependent intrinsic bursting in the rat pilocarpine model of temporal lobe epilepsy.
    Sanabria ER; Su H; Yaari Y
    J Physiol; 2001 Apr; 532(Pt 1):205-16. PubMed ID: 11283235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of NADPH diaphorase-positive neurons in the hippocampal formation of chronic pilocarpine-epileptic rats.
    Hamani C; Tenório F; Mendez-Otero R; Mello LE
    Hippocampus; 1999; 9(3):303-13. PubMed ID: 10401644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sprouting and synaptic reorganization in the subiculum and CA1 region of the hippocampus in acute and chronic models of partial-onset epilepsy.
    Cavazos JE; Jones SM; Cross DJ
    Neuroscience; 2004; 126(3):677-88. PubMed ID: 15183517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.