These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 15700294)
1. Study of the miscibility and segmental motion of STMAA-PBMA polymer blends and semi-interpenetrating polymer networks by an ESR spin probe method. Qiu F; Chen S; Ping Z Magn Reson Chem; 2005 May; 43(5):411-6. PubMed ID: 15700294 [TBL] [Abstract][Full Text] [Related]
2. ESR spin-label study of poly(styrene-co-methacrylic acid)/poly(epsilon-caprolactone) semi-interpenetrating polymer networks with controlled hydrogen-bond interactions. Qiu F; Chen S; Ping Z; Yin G Magn Reson Chem; 2005 Nov; 43(11):918-25. PubMed ID: 16114101 [TBL] [Abstract][Full Text] [Related]
3. Investigations on the mechanisms of ionic conductivity in PEO-PU/PAN semi-interpenetrating polymer network-salt complex polymer electrolytes: an impedance spectroscopy study. Basak P; Manorama SV; Singh RK; Parkash O J Phys Chem B; 2005 Jan; 109(3):1174-82. PubMed ID: 16851078 [TBL] [Abstract][Full Text] [Related]
4. The phase behaviour of poly(styrene-co-methacrylic acid)/poly(2,6-dimethyl-1,4-phenylene oxide) by inverse gas chromatography. Benabdelghani Z; Etxeberria A; Djadoun S; Iruin JJ; Uriarte C J Chromatogr A; 2006 Sep; 1127(1-2):237-45. PubMed ID: 16828107 [TBL] [Abstract][Full Text] [Related]
5. Preparation and characterization of poly(N-isopropylacrylamide)-modified poly(2-hydroxyethyl acrylate) hydrogels by interpenetrating polymer networks for sustained drug release. Liu YY; Lü J; Shao YH Macromol Biosci; 2006 Jun; 6(6):452-8. PubMed ID: 16761277 [TBL] [Abstract][Full Text] [Related]
6. Effects of ethyl and benzyl groups on the miscibility and properties of castor oil-based polyurethane/starch derivative semi-interpenetrating polymer networks. Cao X; Wang Y; Zhang L Macromol Biosci; 2005 Sep; 5(9):863-71. PubMed ID: 16143996 [TBL] [Abstract][Full Text] [Related]
7. Novel functionally grafted pseudo-semi-interpenetrating networks constructed by reactive linear-dendritic copolymers. Gitsov I; Zhu C J Am Chem Soc; 2003 Sep; 125(37):11228-34. PubMed ID: 16220941 [TBL] [Abstract][Full Text] [Related]
8. Phase Behavior of NR/PMMA Semi-IPNs and Development of Porous Structures. John J; Klepac D; Kurek M; Ščetar M; Galić K; Valić S; Thomas S; Pius A Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987133 [TBL] [Abstract][Full Text] [Related]
9. Reaction-induced phase separation of pseudo-interpenetrating polymer networks in polydisperse polymer blends: a simulation study. Henderson IC; Clarke N J Chem Phys; 2005 Oct; 123(14):144903. PubMed ID: 16238420 [TBL] [Abstract][Full Text] [Related]
10. Preparation and hydrolytic degradation of semi-interpenetrating networks of poly(3-hydroxyundecenoate) and poly(lactide-co-glycolide). Kim HW; Chung CW; Kim YB; Rhee YH Int J Biol Macromol; 2005 Dec; 37(5):221-6. PubMed ID: 16405991 [TBL] [Abstract][Full Text] [Related]
11. Sequential interpenetrating polymer networks produced from vegetable oil based polyurethane and poly(methyl methacrylate). Kong X; Narine SS Biomacromolecules; 2008 Aug; 9(8):2221-9. PubMed ID: 18624453 [TBL] [Abstract][Full Text] [Related]
12. A highly stable quadruply hydrogen-bonded heterocomplex useful for supramolecular polymer blends. Park T; Zimmerman SC; Nakashima S J Am Chem Soc; 2005 May; 127(18):6520-1. PubMed ID: 15869258 [TBL] [Abstract][Full Text] [Related]
13. Tracking chemical processing pathways in combinatorial polymer libraries via data mining. Broderick SR; Nowers JR; Narasimhan B; Rajan K J Comb Chem; 2010 Mar; 12(2):270-7. PubMed ID: 20030378 [TBL] [Abstract][Full Text] [Related]
14. Formation of a miscible supramolecular polymer blend through self-assembly mediated by a quadruply hydrogen-bonded heterocomplex. Park T; Zimmerman SC J Am Chem Soc; 2006 Sep; 128(35):11582-90. PubMed ID: 16939282 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of bio-compatibility via specific interactions in polyesters modified with a bio-resourceful macromolecular ester containing polyphenol groups. Yen KC; Mandal TK; Woo EM J Biomed Mater Res A; 2008 Sep; 86(3):701-12. PubMed ID: 18041717 [TBL] [Abstract][Full Text] [Related]
16. Effect of silk fibroin interpenetrating networks on swelling/deswelling kinetics and rheological properties of poly(N-isopropylacrylamide) hydrogels. Gil ES; Hudson SM Biomacromolecules; 2007 Jan; 8(1):258-64. PubMed ID: 17206815 [TBL] [Abstract][Full Text] [Related]
19. Effects of molecular weight on the miscibility and properties of polyurethane/benzyl starch semi-interpenetrating polymer networks. Cao X; Zhang L Biomacromolecules; 2005; 6(2):671-7. PubMed ID: 15762628 [TBL] [Abstract][Full Text] [Related]
20. Nanoscale confinement effects on the relaxation dynamics in networks of diglycidyl ether of bisphenol-A and low-molecular-weight poly(ethylene oxide). Kalogeras IM; Stathopoulos A; Vassilikou-Dova A; Brostow W J Phys Chem B; 2007 Mar; 111(11):2774-82. PubMed ID: 17388436 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]