These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 15700453)

  • 41. Two-step chromatographic procedure for purification of basic fibroblast growth factor from recombinant Escherichia coli and characterization of the equilibrium parameters of adsorption.
    Seeger A; Rinas U
    J Chromatogr A; 1996 Oct; 746(1):17-24. PubMed ID: 8885384
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of small size fully porous particles and superficially porous particles of chiral anion-exchange type stationary phases in ultra-high performance liquid chromatography: effect of particle and pore size on chromatographic efficiency and kinetic performance.
    Schmitt K; Woiwode U; Kohout M; Zhang T; Lindner W; Lämmerhofer M
    J Chromatogr A; 2018 Sep; 1569():149-159. PubMed ID: 30041874
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mass influences in the performance of oligomeric poly(diallyldimethylammonium chloride) as displacer for cation-exchange displacement chromatography of proteins.
    Schmidt B; Wandrey Ch; Freitag R
    J Chromatogr A; 2002 Jan; 944(1-2):149-59. PubMed ID: 11831750
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Displacement chromatography of biomolecules.
    Subramanian G; Phillips MW; Cramer SM
    J Chromatogr; 1988 May; 439(2):341-51. PubMed ID: 3403648
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Displacer concentration effects in displacement chromatography. Implications for trace solute detection.
    Evans ST; Freed A; Cramer SM
    J Chromatogr A; 2009 Jan; 1216(1):79-85. PubMed ID: 19062027
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrokinetically-driven cation-exchange chromatography of proteins and its comparison with pressure-driven high-performance liquid chromatography.
    Xu W; Regnier FE
    J Chromatogr A; 1999 Aug; 853(1-2):243-56. PubMed ID: 10486732
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mobile phase modifier effects in multimodal cation exchange chromatography.
    Holstein MA; Parimal S; McCallum SA; Cramer SM
    Biotechnol Bioeng; 2012 Jan; 109(1):176-86. PubMed ID: 21898370
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preparative high-performance liquid chromatography of proteins on an anion exchanger using unfractionated carboxymethyldextran displacers.
    Torres AR; Edberg SC; Peterson EA
    J Chromatogr; 1987 Feb; 389(1):177-82. PubMed ID: 2437136
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimization of ion-exchange displacement separations. I. Validation of an iterative scheme and its use as a methods development tool.
    Natarajan V; Bequette BW; Cramer SM
    J Chromatogr A; 2000 Apr; 876(1-2):51-62. PubMed ID: 10823501
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improvement of an overloaded, multi-component, solvent gradient bioseparation through multiobjective optimization.
    Tarafder A; Aumann L; Müller-Späth T; Morbidelli M
    J Chromatogr A; 2007 Oct; 1167(1):42-53. PubMed ID: 17765250
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adsorption and ion-exchange isotherms in preparative chromatography.
    Velayudhan A; Horváth C
    J Chromatogr A; 1994 Mar; 663(1):1-10. PubMed ID: 8180655
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Displacement chromatography with on-column isomerization.
    Rathore AS; Horváth C
    J Chromatogr A; 1997 Nov; 787(1-2):1-12. PubMed ID: 9408992
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multi-column displacement chromatography for separation of charge variants of monoclonal antibodies.
    Khanal O; Kumar V; Westerberg K; Schlegel F; Lenhoff AM
    J Chromatogr A; 2019 Feb; 1586():40-51. PubMed ID: 30573313
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A simple graphical representation of selectivity in hydrophilic interaction liquid chromatography.
    Ibrahim ME; Liu Y; Lucy CA
    J Chromatogr A; 2012 Oct; 1260():126-31. PubMed ID: 22980645
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Displacement chromatography of proteins using a self-sharpening pH front formed by adsorbed buffering species as the displacer.
    Narahari CR; Strong JC; Frey DD
    J Chromatogr A; 1998 Nov; 825(2):115-26. PubMed ID: 9842719
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modelling gradient elution of bioactive multicomponent systems in non-linear ion-exchange chromatography.
    Wiesel A; Schmidt-Traub H; Lenz J; Strube J
    J Chromatogr A; 2003 Jul; 1006(1-2):101-20. PubMed ID: 12938879
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [High performance liquid chromatography of nucleotides. Major methods and their development].
    Vul'fson AN; Iakimov SA
    Bioorg Khim; 1983 Mar; 9(3):365-90. PubMed ID: 6679772
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A novel ultra performance liquid chromatography-tandem mass spectrometry method for the determination of sucrose octasulfate in dog plasma.
    Ke Y; Li SL; Chang LD; Kapanadze T
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Jan; 978-979():151-6. PubMed ID: 25553387
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Application of a chromatography model with linear gradient elution experimental data to the rapid scale-up in ion-exchange process chromatography of proteins.
    Ishihara T; Kadoya T; Yamamoto S
    J Chromatogr A; 2007 Aug; 1162(1):34-40. PubMed ID: 17399733
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative studies on the isothermal characteristics of proteins adsorbed under batch equilibrium conditions to ion-exchange, immobilised metal ion affinity and dye affinity matrices with different ionic strength and temperature conditions.
    Finette GM; Mao QM; Hearn MT
    J Chromatogr A; 1997 Feb; 763(1-2):71-90. PubMed ID: 9129317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.