These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 15701007)
1. Membrane dynamics of the amphiphilic siderophore, acinetoferrin. Luo M; Fadeev EA; Groves JT J Am Chem Soc; 2005 Feb; 127(6):1726-36. PubMed ID: 15701007 [TBL] [Abstract][Full Text] [Related]
2. Membrane affinity of the amphiphilic marinobactin siderophores. Xu G; Martinez JS; Groves JT; Butler A J Am Chem Soc; 2002 Nov; 124(45):13408-15. PubMed ID: 12418892 [TBL] [Abstract][Full Text] [Related]
3. Synthesis, structure, and molecular dynamics of gallium complexes of schizokinen and the amphiphilic siderophore acinetoferrin. Fadeev EA; Luo M; Groves JT J Am Chem Soc; 2004 Sep; 126(38):12065-75. PubMed ID: 15382941 [TBL] [Abstract][Full Text] [Related]
4. Utilization of Fe3+-acinetoferrin analogs as an iron source by Mycobacterium tuberculosis. Rodriguez GM; Gardner R; Kaur N; Phanstiel O Biometals; 2008 Feb; 21(1):93-103. PubMed ID: 17401548 [TBL] [Abstract][Full Text] [Related]
5. Identification and characterization of a cluster of genes involved in biosynthesis and transport of acinetoferrin, a siderophore produced by Acinetobacter haemolyticus ATCC 17906T. Funahashi T; Tanabe T; Maki J; Miyamoto K; Tsujibo H; Yamamoto S Microbiology (Reading); 2013 Apr; 159(Pt 4):678-690. PubMed ID: 23378574 [TBL] [Abstract][Full Text] [Related]
6. Borate binding to siderophores: structure and stability. Harris WR; Amin SA; Küpper FC; Green DH; Carrano CJ J Am Chem Soc; 2007 Oct; 129(40):12263-71. PubMed ID: 17850151 [TBL] [Abstract][Full Text] [Related]
7. Transport of long-chain native fatty acids across lipid bilayer membranes indicates that transbilayer flip-flop is rate limiting. Kleinfeld AM; Chu P; Romero C Biochemistry; 1997 Nov; 36(46):14146-58. PubMed ID: 9369487 [TBL] [Abstract][Full Text] [Related]
8. Structure of acinetoferrin, a new citrate-based dihydroxamate siderophore from Acinetobacter haemolyticus. Okujo N; Sakakibara Y; Yoshida T; Yamamoto S Biometals; 1994 Apr; 7(2):170-6. PubMed ID: 8148619 [TBL] [Abstract][Full Text] [Related]
10. Flip-flop of phospholipids in vesicles: kinetic analysis with time-resolved small-angle neutron scattering. Nakano M; Fukuda M; Kudo T; Matsuzaki N; Azuma T; Sekine K; Endo H; Handa T J Phys Chem B; 2009 May; 113(19):6745-8. PubMed ID: 19385639 [TBL] [Abstract][Full Text] [Related]
11. Enzymatic tailoring of enterobactin alters membrane partitioning and iron acquisition. Luo M; Lin H; Fischbach MA; Liu DR; Walsh CT; Groves JT ACS Chem Biol; 2006 Feb; 1(1):29-32. PubMed ID: 17163637 [TBL] [Abstract][Full Text] [Related]
12. Carrier-facilitated bulk liquid membrane transport of iron(III)-siderophore complexes utilizing first coordination sphere recognition. Wirgau JI; Crumbliss AL Inorg Chem; 2003 Sep; 42(18):5762-70. PubMed ID: 12950227 [TBL] [Abstract][Full Text] [Related]
13. Receptors for endogenous and heterogenous hydroxamate siderophores in Staphylococcus aureus B 471. Wysocki P; Lisiecki P; Mikucki J Pol J Microbiol; 2005; 54(2):97-103. PubMed ID: 16209102 [TBL] [Abstract][Full Text] [Related]
14. Flip-flop is slow and rate limiting for the movement of long chain anthroyloxy fatty acids across lipid vesicles. Kleinfeld AM; Chu P; Storch J Biochemistry; 1997 May; 36(19):5702-11. PubMed ID: 9153410 [TBL] [Abstract][Full Text] [Related]
15. Transbilayer movement of phospholipids at the main phase transition of lipid membranes: implications for rapid flip-flop in biological membranes. John K; Schreiber S; Kubelt J; Herrmann A; Müller P Biophys J; 2002 Dec; 83(6):3315-23. PubMed ID: 12496099 [TBL] [Abstract][Full Text] [Related]
16. Phospholipid flop induced by transmembrane peptides in model membranes is modulated by lipid composition. Kol MA; van Laak AN; Rijkers DT; Killian JA; de Kroon AI; de Kruijff B Biochemistry; 2003 Jan; 42(1):231-7. PubMed ID: 12515559 [TBL] [Abstract][Full Text] [Related]
17. The cytoplasmic domains of phospholamban and phospholemman associate with phospholipid membrane surfaces. Clayton JC; Hughes E; Middleton DA Biochemistry; 2005 Dec; 44(51):17016-26. PubMed ID: 16363815 [TBL] [Abstract][Full Text] [Related]
18. Petrobactin-mediated iron transport in pathogenic bacteria: coordination chemistry of an unusual 3,4-catecholate/citrate siderophore. Abergel RJ; Zawadzka AM; Raymond KN J Am Chem Soc; 2008 Feb; 130(7):2124-5. PubMed ID: 18220393 [No Abstract] [Full Text] [Related]
19. Transbilayer movement of fluorescent phospholipids in Bacillus megaterium membrane vesicles. Hrafnsdóttir S; Nichols JW; Menon AK Biochemistry; 1997 Apr; 36(16):4969-78. PubMed ID: 9125519 [TBL] [Abstract][Full Text] [Related]
20. Characterization of Fe(III) sequestration by an analog of the cytotoxic siderophore brasilibactin A: implications for the iron transport mechanism in mycobacteria. Harrington JM; Park H; Ying Y; Hong J; Crumbliss AL Metallomics; 2011 May; 3(5):464-71. PubMed ID: 21442123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]