These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 15701378)

  • 1. The effect of processing on the structural characteristics of vancomycin-loaded amorphous calcium phosphate matrices.
    Dion A; Berno B; Hall G; Filiaggi MJ
    Biomaterials; 2005 Jul; 26(21):4486-94. PubMed ID: 15701378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vancomycin release behaviour from amorphous calcium polyphosphate matrices intended for osteomyelitis treatment.
    Dion A; Langman M; Hall G; Filiaggi M
    Biomaterials; 2005 Dec; 26(35):7276-85. PubMed ID: 16024076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compaction strategies for modifying the drug delivery capabilities of gelled calcium polyphosphate matrices.
    Petrone C; Hall G; Langman M; Filiaggi MJ
    Acta Biomater; 2008 Mar; 4(2):403-13. PubMed ID: 17997374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro elution of vancomycin from biodegradable osteoconductive calcium phosphate-polycaprolactone composite beads for treatment of osteomyelitis.
    Makarov C; Cohen V; Raz-Pasteur A; Gotman I
    Eur J Pharm Sci; 2014 Oct; 62():49-56. PubMed ID: 24859314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gelled calcium polyphosphate matrices delay antibiotic release.
    Schofield SC; Berno B; Langman M; Hall G; Filiaggi MJ
    J Dent Res; 2006 Jul; 85(7):643-7. PubMed ID: 16798866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A two-stage cold isostatic pressing and gelling approach for fabricating a therapeutically loaded amorphous calcium polyphosphate local delivery system.
    Comeau P; Filiaggi M
    J Biomater Appl; 2017 Jul; 32(1):126-136. PubMed ID: 28566002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Conductive bone substitute material with variable antibiotic delivery].
    Englert C; Angele P; Fierlbeck J; Dendorfer S; Schubert T; Müller R; Lienhard S; Zellner J; Nerlich M; Neumann C
    Unfallchirurg; 2007 May; 110(5):408-13. PubMed ID: 17318311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring vancomycin release from beta-TCP/agarose scaffolds.
    Cabañas MV; Peña J; Román J; Vallet-Regí M
    Eur J Pharm Sci; 2009 Jun; 37(3-4):249-56. PubMed ID: 19491012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer--calcium phosphate cement composites for bone substitutes.
    Mickiewicz RA; Mayes AM; Knaack D
    J Biomed Mater Res; 2002 Sep; 61(4):581-92. PubMed ID: 12115448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling vancomycin release kinetics from microporous calcium phosphate ceramics comparing static and dynamic immersion conditions.
    Gbureck U; Vorndran E; Barralet JE
    Acta Biomater; 2008 Sep; 4(5):1480-6. PubMed ID: 18485844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pHEMA-nHA encapsulation and delivery of vancomycin and rhBMP-2 enhances its role as a bone graft substitute.
    Li X; Xu J; Filion TM; Ayers DC; Song J
    Clin Orthop Relat Res; 2013 Aug; 471(8):2540-7. PubMed ID: 23070662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A composite coating by electrolysis-induced collagen self-assembly and calcium phosphate mineralization.
    Fan Y; Duan K; Wang R
    Biomaterials; 2005 May; 26(14):1623-32. PubMed ID: 15576136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of single-phase silicon-substituted alpha-tricalcium phosphate.
    Reid JW; Tuck L; Sayer M; Fargo K; Hendry JA
    Biomaterials; 2006 May; 27(15):2916-25. PubMed ID: 16448694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resorbable bioactive ceramic for treatment of bone infection.
    El-Ghannam A; Jahed K; Govindaswami M
    J Biomed Mater Res A; 2010 Jul; 94(1):308-16. PubMed ID: 20186734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ball milling on the processing of bone substitutes with calcium phosphate powders.
    Bignon A; Chevalier J; Fantozzi G
    J Biomed Mater Res; 2002; 63(5):619-26. PubMed ID: 12209909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-strength resorbable brushite bone cement with controlled drug-releasing capabilities.
    Hofmann MP; Mohammed AR; Perrie Y; Gbureck U; Barralet JE
    Acta Biomater; 2009 Jan; 5(1):43-9. PubMed ID: 18799378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The in vitro elution characteristics of vancomycin from calcium phosphate-calcium sulfate beads.
    Scharer BM; Sanicola SM
    J Foot Ankle Surg; 2009; 48(5):540-2. PubMed ID: 19700115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleation and growth of calcium phosphate on amine-, carboxyl- and hydroxyl-silane self-assembled monolayers.
    Toworfe GK; Composto RJ; Shapiro IM; Ducheyne P
    Biomaterials; 2006 Feb; 27(4):631-42. PubMed ID: 16081155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical effects of the use of vancomycin and meropenem in acrylic bone cement.
    Persson C; Baleani M; Guandalini L; Tigani D; Viceconti M
    Acta Orthop; 2006 Aug; 77(4):617-21. PubMed ID: 16929439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium phosphate cement composites in revision hip arthroplasty.
    Speirs AD; Oxland TR; Masri BA; Poursartip A; Duncan CP
    Biomaterials; 2005 Dec; 26(35):7310-8. PubMed ID: 16023190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.