BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 15701623)

  • 1. Regulation of intestinal phosphate transport. I. Segmental expression and adaptation to low-P(i) diet of the type IIb Na(+)-P(i) cotransporter in mouse small intestine.
    Radanovic T; Wagner CA; Murer H; Biber J
    Am J Physiol Gastrointest Liver Physiol; 2005 Mar; 288(3):G496-500. PubMed ID: 15701623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of intestinal phosphate transport. II. Metabolic acidosis stimulates Na(+)-dependent phosphate absorption and expression of the Na(+)-P(i) cotransporter NaPi-IIb in small intestine.
    Stauber A; Radanovic T; Stange G; Murer H; Wagner CA; Biber J
    Am J Physiol Gastrointest Liver Physiol; 2005 Mar; 288(3):G501-6. PubMed ID: 15701624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of intestinal NaPi-IIb cotransporter gene expression by estrogen.
    Xu H; Uno JK; Inouye M; Xu L; Drees JB; Collins JF; Ghishan FK
    Am J Physiol Gastrointest Liver Physiol; 2003 Dec; 285(6):G1317-24. PubMed ID: 12893629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of intestinal Na+-dependent phosphate co-transporters by a low-phosphate diet and 1,25-dihydroxyvitamin D3.
    Katai K; Miyamoto K; Kishida S; Segawa H; Nii T; Tanaka H; Tani Y; Arai H; Tatsumi S; Morita K; Taketani Y; Takeda E
    Biochem J; 1999 Nov; 343 Pt 3(Pt 3):705-12. PubMed ID: 10527952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intestinal Na-P(i) cotransporter adaptation to dietary P(i) content in vitamin D receptor null mice.
    Segawa H; Kaneko I; Yamanaka S; Ito M; Kuwahata M; Inoue Y; Kato S; Miyamoto K
    Am J Physiol Renal Physiol; 2004 Jul; 287(1):F39-47. PubMed ID: 14996670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intestinal Depletion of NaPi-IIb/Slc34a2 in Mice: Renal and Hormonal Adaptation.
    Hernando N; Myakala K; Simona F; Knöpfel T; Thomas L; Murer H; Wagner CA; Biber J
    J Bone Miner Res; 2015 Oct; 30(10):1925-37. PubMed ID: 25827490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucocorticoid regulation and glycosylation of mouse intestinal type IIb Na-P(i) cotransporter during ontogeny.
    Arima K; Hines ER; Kiela PR; Drees JB; Collins JF; Ghishan FK
    Am J Physiol Gastrointest Liver Physiol; 2002 Aug; 283(2):G426-34. PubMed ID: 12121891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of ischemia-reperfusion on the renal brush-border membrane sodium-dependent phosphate cotransporter NaPi-2.
    Xiao Y; Desrosiers RR; Beliveau R
    Can J Physiol Pharmacol; 2001 Mar; 79(3):206-12. PubMed ID: 11294596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of intestinal phosphate cotransporter NaPi IIb by ubiquitin ligase Nedd4-2 and by serum- and glucocorticoid-dependent kinase 1.
    Palmada M; Dieter M; Speil A; Böhmer C; Mack AF; Wagner HJ; Klingel K; Kandolf R; Murer H; Biber J; Closs EI; Lang F
    Am J Physiol Gastrointest Liver Physiol; 2004 Jul; 287(1):G143-50. PubMed ID: 15044175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renal Na(+)-phosphate cotransport in murine X-linked hypophosphatemic rickets. Molecular characterization.
    Tenenhouse HS; Werner A; Biber J; Ma S; Martel J; Roy S; Murer H
    J Clin Invest; 1994 Feb; 93(2):671-6. PubMed ID: 8113402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of rat intestinal Na-dependent phosphate transporters by dietary phosphate.
    Giral H; Caldas Y; Sutherland E; Wilson P; Breusegem S; Barry N; Blaine J; Jiang T; Wang XX; Levi M
    Am J Physiol Renal Physiol; 2009 Nov; 297(5):F1466-75. PubMed ID: 19675183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intestinal and renal adaptation to a low-Pi diet of type II NaPi cotransporters in vitamin D receptor- and 1alphaOHase-deficient mice.
    Capuano P; Radanovic T; Wagner CA; Bacic D; Kato S; Uchiyama Y; St-Arnoud R; Murer H; Biber J
    Am J Physiol Cell Physiol; 2005 Feb; 288(2):C429-34. PubMed ID: 15643054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of the MAPK-kinase pathway in the PTH-mediated regulation of the proximal tubule type IIa Na+/Pi cotransporter in mouse kidney.
    Bacic D; Schulz N; Biber J; Kaissling B; Murer H; Wagner CA
    Pflugers Arch; 2003 Apr; 446(1):52-60. PubMed ID: 12690463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning, functional characterization, tissue distribution, and chromosomal localization of a human, small intestinal sodium-phosphate (Na+-Pi) transporter (SLC34A2).
    Xu H; Bai L; Collins JF; Ghishan FK
    Genomics; 1999 Dec; 62(2):281-4. PubMed ID: 10610722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the NPT gene by a naturally occurring antisense transcript.
    Werner A; Preston-Fayers K; Dehmelt L; Nalbant P
    Cell Biochem Biophys; 2002; 36(2-3):241-52. PubMed ID: 12139410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium-dependent phosphate transport across the apical membrane of alveolar epithelium in caprine mammary gland.
    Huber K; Muscher A; Breves G
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Feb; 146(2):215-22. PubMed ID: 17137815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of small intestinal Na-P(i) type IIb cotransporter by dietary phosphate intake.
    Hattenhauer O; Traebert M; Murer H; Biber J
    Am J Physiol; 1999 Oct; 277(4):G756-62. PubMed ID: 10516141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intestinal phosphate absorption and the effect of vitamin D: a comparison of rats with mice.
    Marks J; Srai SK; Biber J; Murer H; Unwin RJ; Debnam ES
    Exp Physiol; 2006 May; 91(3):531-7. PubMed ID: 16431934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of intestinal sodium-dependent inorganic phosphate transport by fibroblast growth factor 23.
    Miyamoto K; Ito M; Kuwahata M; Kato S; Segawa H
    Ther Apher Dial; 2005 Aug; 9(4):331-5. PubMed ID: 16076377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nicotinamide prevents the development of hyperphosphataemia by suppressing intestinal sodium-dependent phosphate transporter in rats with adenine-induced renal failure.
    Eto N; Miyata Y; Ohno H; Yamashita T
    Nephrol Dial Transplant; 2005 Jul; 20(7):1378-84. PubMed ID: 15870221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.