BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 15701787)

  • 1. Multiple metabolic roles for the nonphotosynthetic plastid of the green alga Prototheca wickerhamii.
    Borza T; Popescu CE; Lee RW
    Eukaryot Cell; 2005 Feb; 4(2):253-61. PubMed ID: 15701787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleus-encoded genes for plastid-targeted proteins in Helicosporidium: functional diversity of a cryptic plastid in a parasitic alga.
    de Koning AP; Keeling PJ
    Eukaryot Cell; 2004 Oct; 3(5):1198-205. PubMed ID: 15470248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The non-photosynthetic, pathogenic green alga Helicosporidium sp. has retained a modified, functional plastid genome.
    Tartar A; Boucias DG
    FEMS Microbiol Lett; 2004 Apr; 233(1):153-7. PubMed ID: 15043882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple losses of photosynthesis and convergent reductive genome evolution in the colourless green algae Prototheca.
    Suzuki S; Endoh R; Manabe RI; Ohkuma M; Hirakawa Y
    Sci Rep; 2018 Jan; 8(1):940. PubMed ID: 29343788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Euglena gracilis plastid-targeted proteins reveals different classes of transit sequences.
    Durnford DG; Gray MW
    Eukaryot Cell; 2006 Dec; 5(12):2079-91. PubMed ID: 16998072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bilateral communication between plastid and the nucleus: plastid protein import and plastid-to-nucleus retrograde signaling.
    Inaba T
    Biosci Biotechnol Biochem; 2010; 74(3):471-6. PubMed ID: 20208345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Cryptic Plastid of
    Füssy Z; Záhonová K; Tomčala A; Krajčovič J; Yurchenko V; Oborník M; Eliáš M
    mSphere; 2020 Oct; 5(5):. PubMed ID: 33087518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plastid-derived genes in the nonphotosynthetic alveolate Oxyrrhis marina.
    Slamovits CH; Keeling PJ
    Mol Biol Evol; 2008 Jul; 25(7):1297-306. PubMed ID: 18385218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex Endosymbioses II: The Nonphotosynthetic Plastid of Apicomplexa Parasites (The Apicoplast) and Its Integrated Metabolism.
    Botté CY; Yamaryo-Botté Y
    Methods Mol Biol; 2018; 1829():37-54. PubMed ID: 29987713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Non-photosynthetic Diatom Reveals Early Steps of Reductive Evolution in Plastids.
    Kamikawa R; Moog D; Zauner S; Tanifuji G; Ishida KI; Miyashita H; Mayama S; Hashimoto T; Maier UG; Archibald JM; Inagaki Y
    Mol Biol Evol; 2017 Sep; 34(9):2355-2366. PubMed ID: 28549159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequencing and Analysis of the Complete Organellar Genomes of
    Bakuła Z; Gromadka R; Gawor J; Siedlecki P; Pomorski JJ; Maciszewski K; Gromadka A; Karnkowska A; Jagielski T
    Front Plant Sci; 2020; 11():1296. PubMed ID: 32983192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The complete plastid genome sequence of the parasitic green alga Helicosporidium sp. is highly reduced and structured.
    de Koning AP; Keeling PJ
    BMC Biol; 2006 Apr; 4():12. PubMed ID: 16630350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auxenochlorella protothecoides and Prototheca wickerhamii plastid genome sequences give insight into the origins of non-photosynthetic algae.
    Yan D; Wang Y; Murakami T; Shen Y; Gong J; Jiang H; Smith DR; Pombert JF; Dai J; Wu Q
    Sci Rep; 2015 Sep; 5():14465. PubMed ID: 26403826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The plastid proteome of the nonphotosynthetic chlorophycean alga Polytomella parva.
    Fuentes-Ramírez EO; Vázquez-Acevedo M; Cabrera-Orefice A; Guerrero-Castillo S; González-Halphen D
    Microbiol Res; 2021 Feb; 243():126649. PubMed ID: 33285428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome sequencing of Prototheca zopfii genotypes 1 and 2 provides evidence of a severe reduction in organellar genomes.
    Severgnini M; Lazzari B; Capra E; Chessa S; Luini M; Bordoni R; Castiglioni B; Ricchi M; Cremonesi P
    Sci Rep; 2018 Oct; 8(1):14637. PubMed ID: 30279542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes.
    Dorrell RG; Azuma T; Nomura M; Audren de Kerdrel G; Paoli L; Yang S; Bowler C; Ishii KI; Miyashita H; Gile GH; Kamikawa R
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6914-6923. PubMed ID: 30872488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cryptic algal group unveiled: a plastid biosynthesis pathway in the oyster parasite Perkinsus marinus.
    Matsuzaki M; Kuroiwa H; Kuroiwa T; Kita K; Nozaki H
    Mol Biol Evol; 2008 Jun; 25(6):1167-79. PubMed ID: 18359776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The genes encoding subunits of ATP synthase are conserved in the reduced plastid genome of the heterotrophic alga Prototheca wickerhamii.
    Knauf U; Hachtel W
    Mol Genet Genomics; 2002 Jun; 267(4):492-7. PubMed ID: 12111556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate.
    Gornik SG; Febrimarsa ; Cassin AM; MacRae JI; Ramaprasad A; Rchiad Z; McConville MJ; Bacic A; McFadden GI; Pain A; Waller RF
    Proc Natl Acad Sci U S A; 2015 May; 112(18):5767-72. PubMed ID: 25902514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of plastid 16S rRNA (rrn16) genes from Helicosporidium spp.: evidence supporting the reclassification of Helicosporidia as green algae (Chlorophyta).
    Tartar A; Boucias DG; Becnel JJ; Adams BJ
    Int J Syst Evol Microbiol; 2003 Nov; 53(Pt 6):1719-23. PubMed ID: 14657099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.