BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 15701793)

  • 1. Coevolution of cyclin Pcl5 and its substrate Gcn4.
    Gildor T; Shemer R; Atir-Lande A; Kornitzer D
    Eukaryot Cell; 2005 Feb; 4(2):310-8. PubMed ID: 15701793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation of the cyclin CaPcl5 modulates both cyclin stability and specific recognition of the substrate.
    Simon E; Gildor T; Kornitzer D
    J Mol Biol; 2013 Sep; 425(17):3151-65. PubMed ID: 23763991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autophosphorylation-induced degradation of the Pho85 cyclin Pcl5 is essential for response to amino acid limitation.
    Aviram S; Simon E; Gildor T; Glaser F; Kornitzer D
    Mol Cell Biol; 2008 Nov; 28(22):6858-69. PubMed ID: 18794371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the transcription factor Gcn4 by Pho85 cyclin PCL5.
    Shemer R; Meimoun A; Holtzman T; Kornitzer D
    Mol Cell Biol; 2002 Aug; 22(15):5395-404. PubMed ID: 12101234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans.
    Tripathi G; Wiltshire C; Macaskill S; Tournu H; Budge S; Brown AJ
    EMBO J; 2002 Oct; 21(20):5448-56. PubMed ID: 12374745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of Saccharomyces cerevisiae transcription factor Gcn4 requires a C-terminal nuclear localization signal in the cyclin Pcl5.
    Streckfuss-Bömeke K; Schulze F; Herzog B; Scholz E; Braus GH
    Eukaryot Cell; 2009 Apr; 8(4):496-510. PubMed ID: 19218424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription factor GCN4 for control of amino acid biosynthesis also regulates the expression of the gene for lipoamide dehydrogenase.
    Zaman Z; Bowman SB; Kornfeld GD; Brown AJ; Dawes IW
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):855-62. PubMed ID: 10359673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A GCN-like response in Candida albicans.
    Pereira SA; Livi GP
    Cell Biol Int; 1995 Jan; 19(1):65-9. PubMed ID: 7613513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a Candida albicans homologue of the PHO85 gene, a negative regulator of the PHO system in Saccharomyces cerevisiae.
    Miyakawa Y
    Yeast; 2000 Aug; 16(11):1045-51. PubMed ID: 10923026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A feedback circuit between transcriptional activation and self-destruction of Gcn4 separates its metabolic and morphogenic response in diploid yeasts.
    Herzog B; Streckfuss-Bömeke K; Braus GH
    J Mol Biol; 2011 Jan; 405(4):909-25. PubMed ID: 21111745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global role of the protein kinase Gcn2 in the human pathogen Candida albicans.
    Tournu H; Tripathi G; Bertram G; Macaskill S; Mavor A; Walker L; Odds FC; Gow NA; Brown AJ
    Eukaryot Cell; 2005 Oct; 4(10):1687-96. PubMed ID: 16215176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase.
    Chi Y; Huddleston MJ; Zhang X; Young RA; Annan RS; Carr SA; Deshaies RJ
    Genes Dev; 2001 May; 15(9):1078-92. PubMed ID: 11331604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tcc1p, a novel protein containing the tetratricopeptide repeat motif, interacts with Tup1p to regulate morphological transition and virulence in Candida albicans.
    Kaneko A; Umeyama T; Utena-Abe Y; Yamagoe S; Niimi M; Uehara Y
    Eukaryot Cell; 2006 Nov; 5(11):1894-905. PubMed ID: 16998076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of the transcription factor Gcn4 requires the kinase Pho85 and the SCF(CDC4) ubiquitin-ligase complex.
    Meimoun A; Holtzman T; Weissman Z; McBride HJ; Stillman DJ; Fink GR; Kornitzer D
    Mol Biol Cell; 2000 Mar; 11(3):915-27. PubMed ID: 10712509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis.
    Zheng X; Wang Y; Wang Y
    EMBO J; 2004 Apr; 23(8):1845-56. PubMed ID: 15071502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and functional characterization of a novel Candida albicans gene CaMNN5 that suppresses the iron-dependent growth defect of Saccharomyces cerevisiae aft1Delta mutant.
    Bai C; Chan FY; Wang Y
    Biochem J; 2005 Jul; 389(Pt 1):27-35. PubMed ID: 15725072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudohyphal growth in a dimorphic yeast, Candida maltosa, after disruption of the C-GCN4 gene, a homolog of Saccharomyces cerevisiae GCN4.
    Takaku H; Horiuchi H; Takagi M; Ohta A
    Biosci Biotechnol Biochem; 2002 Sep; 66(9):1936-9. PubMed ID: 12400694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The centromere-binding factor Cbf1p from Candida albicans complements the methionine auxotrophic phenotype of Saccharomyces cerevisiae.
    Eck R; Stoyan T; Künkel W
    Yeast; 2001 Aug; 18(11):1047-52. PubMed ID: 11481675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of Zinc-responsive transcription factor Csr1 in filamentous growth of the pathogenic Yeast Candida albicans.
    Kim MJ; Kil M; Jung JH; Kim J
    J Microbiol Biotechnol; 2008 Feb; 18(2):242-7. PubMed ID: 18309267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Pcl-like cyclin of Aspergillus nidulans is transcriptionally activated by developmental regulators and is involved in sporulation.
    Schier N; Liese R; Fischer R
    Mol Cell Biol; 2001 Jun; 21(12):4075-88. PubMed ID: 11359914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.