These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 15702555)

  • 41. Sulfur-selective desulfurization of dibenzothiophene and diesel oil by newly isolated Rhodococcus sp. strains.
    Castorena G; Suárez C; Valdez I; Amador G; Fernández L; Le Borgne S
    FEMS Microbiol Lett; 2002 Sep; 215(1):157-61. PubMed ID: 12393216
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Draft genome sequence of the nitrophenol-degrading actinomycete Rhodococcus imtechensis RKJ300.
    Vikram S; Kumar S; Subramanian S; Raghava GP
    J Bacteriol; 2012 Jul; 194(13):3543. PubMed ID: 22689233
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metabolism of 2-mercaptobenzothiazole by Rhodococcus rhodochrous.
    Haroune N; Combourieu B; Besse P; Sancelme M; Kloepfer A; Reemtsma T; De Wever H; Delort AM
    Appl Environ Microbiol; 2004 Oct; 70(10):6315-9. PubMed ID: 15466583
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microbial biodegradation and toxicity of vinclozolin and its toxic metabolite 3,5-dichloroaniline.
    Lee JB; Sohn HY; Shin KS; Kim JS; Jo MS; Jeon CP; Jang JO; Kim JE; Kwon GS
    J Microbiol Biotechnol; 2008 Feb; 18(2):343-9. PubMed ID: 18309282
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of the naphthalene-degrading bacterium, Rhodococcus opacus M213.
    Uz I; Duan YP; Ogram A
    FEMS Microbiol Lett; 2000 Apr; 185(2):231-8. PubMed ID: 10754253
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Catabolism of 1,3-dinitrobenzene by Rhodococcus sp. QT-1.
    Dickel O; Knackmuss HJ
    Arch Microbiol; 1991; 157(1):76-9. PubMed ID: 1814279
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Isolation and characterization of Rhodococcus sp. NB5 capable of degrading a high concentration of nitrobenzene.
    Lin H; Chen XJ; Ding HT; Jia XM; Zhao YH
    J Basic Microbiol; 2011 Aug; 51(4):397-403. PubMed ID: 21298674
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Isolation and preliminary characterization of a 3-chlorobenzoate degrading bacteria.
    Qi Y; Zhao L; Olusheyi OZ; Tan X
    J Environ Sci (China); 2007; 19(3):332-7. PubMed ID: 17918596
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 1,3,5-Trihydroxybenzene biodegradation by Rhodococcus sp. BPG-8.
    Armstrong S; Patel TR
    Can J Microbiol; 1993 Feb; 39(2):175-9. PubMed ID: 8467418
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Degradation of 1,3-dichloropropene by a soil bacterial consortium and Rhodococcus sp. AS2C isolated from the consortium.
    Ou LT; Thomas JE; Chung KY; Ogram AV
    Biodegradation; 2001; 12(1):39-47. PubMed ID: 11693294
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Degradation and O-methylation of chlorinated phenolic compounds by Rhodococcus and Mycobacterium strains.
    Häggblom MM; Nohynek LJ; Salkinoja-Salonen MS
    Appl Environ Microbiol; 1988 Dec; 54(12):3043-52. PubMed ID: 3223768
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biodegradation of bis(1-chloro-2-propyl) ether via initial ether scission and subsequent dehalogenation by Rhodococcus sp. strain DTB.
    Moreno Horn M; Garbe LA; Tressl R; Adrian L; Görisch H
    Arch Microbiol; 2003 Apr; 179(4):234-41. PubMed ID: 12605291
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of a Rhodococcus recombinant strain for degradation of products from anaerobic dechlorination of PCBs.
    Rodrigues JL; Maltseva OV; Tsoi TV; Helton RR; Quensen JF; Fukuda M; Tiedje JM
    Environ Sci Technol; 2001 Feb; 35(4):663-8. PubMed ID: 11349275
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biotechnological Potential of
    Kim D; Choi KY; Yoo M; Zylstra GJ; Kim E
    J Microbiol Biotechnol; 2018 Jul; 28(7):1037-1051. PubMed ID: 29913546
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Thermotolerant oil-degrading bacteria isolated from soil and water of geographically distant regions].
    Delegan YA; Vetrova AA; Akimov VN; Titok MA; Filonov AE; Boronin AM
    Prikl Biokhim Mikrobiol; 2016; 52(4):383-91. PubMed ID: 29512982
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biochemical pathways and enhanced degradation of di-n-octyl phthalate (DOP) in sequencing batch reactor (SBR) by Arthrobacter sp. SLG-4 and Rhodococcus sp. SLG-6 isolated from activated sludge.
    Zhang K; Liu Y; Chen Q; Luo H; Zhu Z; Chen W; Chen J; Mo Y
    Biodegradation; 2018 Apr; 29(2):171-185. PubMed ID: 29450665
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genome and Phenotype Microarray Analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: Genetic Determinants and Metabolic Abilities with Environmental Relevance.
    Orro A; Cappelletti M; D'Ursi P; Milanesi L; Di Canito A; Zampolli J; Collina E; Decorosi F; Viti C; Fedi S; Presentato A; Zannoni D; Di Gennaro P
    PLoS One; 2015; 10(10):e0139467. PubMed ID: 26426997
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biotransformation of geraniol by Rhodococcus sp. strain GR3.
    Chatterjee T
    Biotechnol Appl Biochem; 2004 Jun; 39(Pt 3):303-6. PubMed ID: 15154841
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microtitre plate assay for biofilm formation, production and utilization of hydroxybiphenyl by Rhodococcus sp. isolated from gasoline-contaminated soil.
    Etemadifar Z; Emtiazi G
    Z Naturforsch C J Biosci; 2008; 63(7-8):599-604. PubMed ID: 18811008
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Isolation and characterization of a carbendazim-degrading Rhodococcus sp. djl-6.
    Jing-Liang X; Xiang-Yang G; Biao S; Zhi-Chun W; Kun W; Shun-Peng L
    Curr Microbiol; 2006 Jul; 53(1):72-6. PubMed ID: 16775791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.