These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 15702928)

  • 1. The role of electrostatic interaction in triggering the unraveling of stable helix 1 in normal prion protein. A molecular dynamics simulation investigation.
    Ji HF; Zhang HY; Shen L
    J Biomol Struct Dyn; 2005 Apr; 22(5):563-70. PubMed ID: 15702928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The conversion of helix H2 to beta-sheet is accelerated in the monomer and dimer of the prion protein upon T183A mutation.
    Chebaro Y; Derreumaux P
    J Phys Chem B; 2009 May; 113(19):6942-8. PubMed ID: 19371053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical studies of sequence effects on the conformational properties of a fragment of the prion protein: implications for scrapie formation.
    Kazmirski SL; Alonso DO; Cohen FE; Prusiner SB; Daggett V
    Chem Biol; 1995 May; 2(5):305-15. PubMed ID: 9383432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrity of H1 helix in prion protein revealed by molecular dynamic simulations to be especially vulnerable to changes in the relative orientation of H1 and its S1 flank.
    Tseng CY; Yu CP; Lee HC
    Eur Biophys J; 2009 Jun; 38(5):601-11. PubMed ID: 19229533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The determinants of stability in the human prion protein: insights into folding and misfolding from the analysis of the change in the stabilization energy distribution in different conditions.
    Colacino S; Tiana G; Broglia RA; Colombo G
    Proteins; 2006 Mar; 62(3):698-707. PubMed ID: 16432880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevalent mutations of human prion protein: a molecular modeling and molecular dynamics study.
    Behmard E; Abdolmaleki P; Asadabadi EB; Jahandideh S
    J Biomol Struct Dyn; 2011 Oct; 29(2):379-89. PubMed ID: 21875156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic characterization of conformational differences between PrPC and PrPSc: an alpha-helix to beta-sheet transition.
    Baldwin MA; Pan KM; Nguyen J; Huang Z; Groth D; Serban A; Gasset M; Mehlhorn I; Fletterick RJ; Cohen FE
    Philos Trans R Soc Lond B Biol Sci; 1994 Mar; 343(1306):435-41. PubMed ID: 7913763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico analysis of prion protein mutants: a comparative study by molecular dynamics approach.
    Doss CG; Rajith B; Rajasekaran R; Srajan J; Nagasundaram N; Debajyoti C
    Cell Biochem Biophys; 2013; 67(3):1307-18. PubMed ID: 23723004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prion encephalopathies of animals and humans.
    Prusiner SB
    Dev Biol Stand; 1993; 80():31-44. PubMed ID: 8270114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulating the conformation of prion protein through ligand binding.
    Yamamoto N; Kuwata K
    J Phys Chem B; 2009 Oct; 113(39):12853-6. PubMed ID: 19725511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interaction of humic substances with the human prion protein fragment 90-231 affects its protease K resistance and cell internalization.
    Corsaro A; Anselmi C; Polano M; Aceto A; Florio T; De Nobili M
    J Biol Regul Homeost Agents; 2010; 24(1):27-39. PubMed ID: 20385069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scrapie prions: a three-dimensional model of an infectious fragment.
    Huang Z; Prusiner SB; Cohen FE
    Fold Des; 1995; 1(1):13-9. PubMed ID: 9162135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring structural and thermodynamic stabilities of human prion protein pathogenic mutants D202N, E211Q and Q217R.
    Guo J; Ren H; Ning L; Liu H; Yao X
    J Struct Biol; 2012 Jun; 178(3):225-32. PubMed ID: 22491059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural properties of prion protein protofibrils and fibrils: an experimental assessment of atomic models.
    DeMarco ML; Silveira J; Caughey B; Daggett V
    Biochemistry; 2006 Dec; 45(51):15573-82. PubMed ID: 17176078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational studies on prion proteins: effect of Ala(117)-->Val mutation.
    Okimoto N; Yamanaka K; Suenaga A; Hata M; Hoshino T
    Biophys J; 2002 May; 82(5):2746-57. PubMed ID: 11964260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The key-role of tyrosine 155 in the mechanism of prion transconformation as highlighted by a study of sheep mutant peptides.
    Bertho G; Bouvier G; Hoa GH; Girault JP
    Peptides; 2008 Jul; 29(7):1073-84. PubMed ID: 18455265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular clues to pathogenesis in prion diseases.
    Laurent M; Johannin G
    Histol Histopathol; 1997 Apr; 12(2):583-94. PubMed ID: 9151145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the helix capping in the stability of the mouse prion (180-213) segment: investigation through molecular dynamics simulations.
    Iovino M; Falconi M; Petruzzelli R; Desideri A
    J Biomol Struct Dyn; 2001 Oct; 19(2):237-46. PubMed ID: 11697729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic simulation of the mouse prion protein.
    Guilbert C; Ricard F; Smith JC
    Biopolymers; 2000 Nov; 54(6):406-15. PubMed ID: 10951327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of the tail and mutations G131V and M129V on prion protein flexibility.
    Santini S; Claude JB; Audic S; Derreumaux P
    Proteins; 2003 May; 51(2):258-65. PubMed ID: 12660994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.