These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 1570312)
1. Evidence for peptide transport across microsomal membranes. Koppelman B; Zimmerman DL; Walter P; Brodsky FM Proc Natl Acad Sci U S A; 1992 May; 89(9):3908-12. PubMed ID: 1570312 [TBL] [Abstract][Full Text] [Related]
2. Translocation of long peptides by transporters associated with antigen processing (TAP). Koopmann JO; Post M; Neefjes JJ; Hämmerling GJ; Momburg F Eur J Immunol; 1996 Aug; 26(8):1720-8. PubMed ID: 8765012 [TBL] [Abstract][Full Text] [Related]
3. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. McCracken AA; Brodsky JL J Cell Biol; 1996 Feb; 132(3):291-8. PubMed ID: 8636208 [TBL] [Abstract][Full Text] [Related]
4. Characteristics of peptide and major histocompatibility complex class I/beta 2-microglobulin binding to the transporters associated with antigen processing (TAP1 and TAP2). Androlewicz MJ; Ortmann B; van Endert PM; Spies T; Cresswell P Proc Natl Acad Sci U S A; 1994 Dec; 91(26):12716-20. PubMed ID: 7809108 [TBL] [Abstract][Full Text] [Related]
5. Evidence that transporters associated with antigen processing translocate a major histocompatibility complex class I-binding peptide into the endoplasmic reticulum in an ATP-dependent manner. Androlewicz MJ; Anderson KS; Cresswell P Proc Natl Acad Sci U S A; 1993 Oct; 90(19):9130-4. PubMed ID: 8415666 [TBL] [Abstract][Full Text] [Related]
6. Protein translocation across the yeast microsomal membrane is stimulated by a soluble factor. Waters MG; Chirico WJ; Blobel G J Cell Biol; 1986 Dec; 103(6 Pt 2):2629-36. PubMed ID: 3025220 [TBL] [Abstract][Full Text] [Related]
7. A homologous cell-free system for studying protein translocation across the endoplasmic reticulum membrane in fission yeast. Brennwald P; Wise JA Yeast; 1994 Feb; 10(2):159-72. PubMed ID: 8203158 [TBL] [Abstract][Full Text] [Related]
8. TAP (transporter associated with antigen processing)-independent presentation of endogenously synthesized peptides is enhanced by endoplasmic reticulum insertion sequences located at the amino- but not carboxyl-terminus of the peptide. Bacik I; Cox JH; Anderson R; Yewdell JW; Bennink JR J Immunol; 1994 Jan; 152(2):381-7. PubMed ID: 8283027 [TBL] [Abstract][Full Text] [Related]
9. Cotranslational glycosylation of proteins in systems depleted of protein disulphide isomerase. Bulleid NJ; Freedman RB EMBO J; 1990 Nov; 9(11):3527-32. PubMed ID: 2120042 [TBL] [Abstract][Full Text] [Related]
10. Novel peptide-binding proteins and peptide transport in normal and TAP-deficient microsomes. Marusina K; Reid G; Gabathuler R; Jefferies W; Monaco JJ Biochemistry; 1997 Jan; 36(4):856-63. PubMed ID: 9020784 [TBL] [Abstract][Full Text] [Related]
11. Post-translational transport of proteins into microsomal membranes of Candida maltosa. Wiedmann M; Wiedmann B; Voigt S; Wachter E; Müller HG; Rapoport TA EMBO J; 1988 Jun; 7(6):1763-8. PubMed ID: 3169003 [TBL] [Abstract][Full Text] [Related]
12. Selectivity of MHC-encoded peptide transporters from human, mouse and rat. Momburg F; Roelse J; Howard JC; Butcher GW; Hämmerling GJ; Neefjes JJ Nature; 1994 Feb; 367(6464):648-51. PubMed ID: 8107849 [TBL] [Abstract][Full Text] [Related]
13. Selection and binding of peptides to human transporters associated with antigen processing and rat cim-a and -b. Wang P; Gyllner G; Kvist S J Immunol; 1996 Jul; 157(1):213-20. PubMed ID: 8683118 [TBL] [Abstract][Full Text] [Related]
14. Processing of HIV-1 envelope glycoprotein for class I-restricted recognition: dependence on TAP1/2 and mechanisms for cytosolic localization. Ferris RL; Hall C; Sipsas NV; Safrit JT; Trocha A; Koup RA; Johnson RP; Siliciano RF J Immunol; 1999 Feb; 162(3):1324-32. PubMed ID: 9973386 [TBL] [Abstract][Full Text] [Related]
15. Sheep pancreatic microsomes as an alternative to the dog source for studying protein translocation. Kaderbhai MA; Harding VJ; Karim A; Austen BM; Kaderbhai NN Biochem J; 1995 Feb; 306 ( Pt 1)(Pt 1):57-61. PubMed ID: 7864829 [TBL] [Abstract][Full Text] [Related]
16. Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. Powers T; Walter P EMBO J; 1997 Aug; 16(16):4880-6. PubMed ID: 9305630 [TBL] [Abstract][Full Text] [Related]
17. Early events in the assembly of MHC class I antigens. Kvist S; Lévy F Semin Immunol; 1993 Apr; 5(2):105-16. PubMed ID: 8504215 [TBL] [Abstract][Full Text] [Related]
18. Hepatitis C virus envelope glycoprotein E1 originates in the endoplasmic reticulum and requires cytoplasmic processing for presentation by class I MHC molecules. Selby M; Erickson A; Dong C; Cooper S; Parham P; Houghton M; Walker CM J Immunol; 1999 Jan; 162(2):669-76. PubMed ID: 9916684 [TBL] [Abstract][Full Text] [Related]
19. Secretion in yeast: translocation and glycosylation of prepro-alpha-factor in vitro can occur via an ATP-dependent post-translational mechanism. Rothblatt JA; Meyer DI EMBO J; 1986 May; 5(5):1031-6. PubMed ID: 15957217 [TBL] [Abstract][Full Text] [Related]
20. MHC class I molecules can direct proteolytic cleavage of antigenic precursors in the endoplasmic reticulum. Brouwenstijn N; Serwold T; Shastri N Immunity; 2001 Jul; 15(1):95-104. PubMed ID: 11485741 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]