These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. Cregan SP; Fortin A; MacLaurin JG; Callaghan SM; Cecconi F; Yu SW; Dawson TM; Dawson VL; Park DS; Kroemer G; Slack RS J Cell Biol; 2002 Aug; 158(3):507-17. PubMed ID: 12147675 [TBL] [Abstract][Full Text] [Related]
4. Hierarchical recruitment by AMPA but not staurosporine of pro-apoptotic mitochondrial signaling in cultured cortical neurons: evidence for caspase-dependent/independent cross-talk. Beart PM; Lim ML; Chen B; Diwakarla S; Mercer LD; Cheung NS; Nagley P J Neurochem; 2007 Dec; 103(6):2408-27. PubMed ID: 17887970 [TBL] [Abstract][Full Text] [Related]
5. Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures. Kristensen BW; Noraberg J; Zimmer J Brain Res; 2001 Oct; 917(1):21-44. PubMed ID: 11602227 [TBL] [Abstract][Full Text] [Related]
6. Domoic acid-induced neuronal damage in the rat hippocampus: changes in apoptosis related genes (bcl-2, bax, caspase-3) and microglial response. Ananth C; Thameem Dheen S; Gopalakrishnakone P; Kaur C J Neurosci Res; 2001 Oct; 66(2):177-90. PubMed ID: 11592113 [TBL] [Abstract][Full Text] [Related]
7. Downregulation of apoptosis-inducing factor in harlequin mutant mice sensitizes the myocardium to oxidative stress-related cell death and pressure overload-induced decompensation. van Empel VP; Bertrand AT; van der Nagel R; Kostin S; Doevendans PA; Crijns HJ; de Wit E; Sluiter W; Ackerman SL; De Windt LJ Circ Res; 2005 Jun; 96(12):e92-e101. PubMed ID: 15933268 [TBL] [Abstract][Full Text] [Related]
8. N-methyl-D-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca(2+) influx. Urushitani M; Nakamizo T; Inoue R; Sawada H; Kihara T; Honda K; Akaike A; Shimohama S J Neurosci Res; 2001 Mar; 63(5):377-87. PubMed ID: 11223912 [TBL] [Abstract][Full Text] [Related]
9. NF-κB-dependent and -independent pathways in the protective effects of activated protein C in hippocampal and cortical neurons at excitotoxicity. Gorbacheva L; Strukova S; Pinelis V; Ishiwata S; Stricker R; Reiser G Neurochem Int; 2013 Aug; 63(2):101-11. PubMed ID: 23727063 [TBL] [Abstract][Full Text] [Related]
10. Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor (AIF) and this process is inhibited by equine estrogens. Zhang Y; Bhavnani BR BMC Neurosci; 2006 Jun; 7():49. PubMed ID: 16776830 [TBL] [Abstract][Full Text] [Related]
11. Blockade of ionotropic glutamate receptors produces neuronal apoptosis through the Bax-cytochrome C-caspase pathway: the causative role of Ca2+ deficiency. Yoon WJ; Won SJ; Ryu BR; Gwag BJ J Neurochem; 2003 Apr; 85(2):525-33. PubMed ID: 12675929 [TBL] [Abstract][Full Text] [Related]
12. Translocation of apoptosis-inducing factor in vulnerable neurons after transient cerebral ischemia and in neuronal cultures after oxygen-glucose deprivation. Cao G; Clark RS; Pei W; Yin W; Zhang F; Sun FY; Graham SH; Chen J J Cereb Blood Flow Metab; 2003 Oct; 23(10):1137-50. PubMed ID: 14526224 [TBL] [Abstract][Full Text] [Related]
14. Kainate excitotoxicity in organotypic hippocampal slice cultures: evidence for multiple apoptotic pathways. Liu W; Liu R; Chun JT; Bi R; Hoe W; Schreiber SS; Baudry M Brain Res; 2001 Oct; 916(1-2):239-48. PubMed ID: 11597611 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of apoptosis-inducing factor translocation is involved in protective effects of hepatocyte growth factor against excitotoxic cell death in cultured hippocampal neurons. Ishihara N; Takagi N; Niimura M; Takagi K; Nakano M; Tanonaka K; Funakoshi H; Matsumoto K; Nakamura T; Takeo S J Neurochem; 2005 Dec; 95(5):1277-86. PubMed ID: 16135073 [TBL] [Abstract][Full Text] [Related]
16. Enhanced cell death in MeCP2 null cerebellar granule neurons exposed to excitotoxicity and hypoxia. Russell JC; Blue ME; Johnston MV; Naidu S; Hossain MA Neuroscience; 2007 Dec; 150(3):563-74. PubMed ID: 17997046 [TBL] [Abstract][Full Text] [Related]
17. Effects of TRH and its analogues on primary cortical neuronal cell damage induced by various excitotoxic, necrotic and apoptotic agents. Jantas D; Jaworska-Feil L; Lipkowski AW; Lason W Neuropeptides; 2009 Oct; 43(5):371-85. PubMed ID: 19666192 [TBL] [Abstract][Full Text] [Related]
18. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Joza N; Susin SA; Daugas E; Stanford WL; Cho SK; Li CY; Sasaki T; Elia AJ; Cheng HY; Ravagnan L; Ferri KF; Zamzami N; Wakeham A; Hakem R; Yoshida H; Kong YY; Mak TW; Zúñiga-Pflücker JC; Kroemer G; Penninger JM Nature; 2001 Mar; 410(6828):549-54. PubMed ID: 11279485 [TBL] [Abstract][Full Text] [Related]
19. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Yu SW; Wang H; Poitras MF; Coombs C; Bowers WJ; Federoff HJ; Poirier GG; Dawson TM; Dawson VL Science; 2002 Jul; 297(5579):259-63. PubMed ID: 12114629 [TBL] [Abstract][Full Text] [Related]
20. A role of the mitochondrial apoptosis-inducing factor in granulysin-induced apoptosis. Pardo J; Pérez-Galán P; Gamen S; Marzo I; Monleón I; Kaspar AA; Susín SA; Kroemer G; Krensky AM; Naval J; Anel A J Immunol; 2001 Aug; 167(3):1222-9. PubMed ID: 11466337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]