These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 15704408)

  • 1. Acoustic measurements of the sound-speed profile in the bubbly wake formed by a small motor boat.
    Vagle S; Burch H
    J Acoust Soc Am; 2005 Jan; 117(1):153-63. PubMed ID: 15704408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic spectrometry of bubbles in an estuarine front: Sound speed dispersion, void fraction, and bubble density.
    Reeder DB; Joseph JE; Rago TA; Bullard JM; Honegger D; Haller MC
    J Acoust Soc Am; 2022 Apr; 151(4):2429. PubMed ID: 35461491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase speed and attenuation in bubbly liquids inferred from impedance measurements near the individual bubble resonance frequency.
    Wilson PS; Roy RA; Carey WM
    J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):1895-910. PubMed ID: 15898635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the pressure dependence of sound speed and attenuation in bubbly media: Experimental observations, a theoretical model and numerical calculations.
    Sojahrood AJ; Li Q; Haghi H; Karshafian R; Porter TM; Kolios MC
    Ultrason Sonochem; 2023 May; 95():106319. PubMed ID: 36931196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of bubble distributions on the propagation of linear waves in polydisperse bubbly liquids.
    Fan Y; Li H; Xu C; Zhou T
    J Acoust Soc Am; 2019 Jan; 145(1):16. PubMed ID: 30710962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-Dimensional Numerical Simulations of Ultrasound in Liquids with Gas Bubble Agglomerates: Examples of Bubbly-Liquid-Type Acoustic Metamaterials (BLAMMs).
    Vanhille C
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28106748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear ultrasonic waves in bubbly liquids with nonhomogeneous bubble distribution: Numerical experiments.
    Vanhille C; Campos-Pozuelo C
    Ultrason Sonochem; 2009 Jun; 16(5):669-85. PubMed ID: 19171496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic localization in weakly compressible elastic media containing random air bubbles.
    Liang B; Cheng JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016605. PubMed ID: 17358273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influences of non-uniform pressure field outside bubbles on the propagation of acoustic waves in dilute bubbly liquids.
    Zhang Y; Du X
    Ultrason Sonochem; 2015 Sep; 26():119-127. PubMed ID: 25771332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic susceptibility based magnetic resonance estimation of micro-bubble size for the vertically upward bubbly flow.
    Arbabi A; Mastikhin IV
    J Magn Reson; 2012 Dec; 225():36-45. PubMed ID: 23117260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consistency in statistical moments as a test for bubble cloud clustering.
    Weber TC; Lyons AP; Bradley DL
    J Acoust Soc Am; 2011 Nov; 130(5):3396-405. PubMed ID: 22088013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bubble stimulation efficiency of dinoflagellate bioluminescence.
    Deane GB; Stokes MD; Latz MI
    Luminescence; 2016 Feb; 31(1):270-80. PubMed ID: 26061152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical and experimental investigations of ultrasonic sound fields in thin bubbly liquid layers for ultrasonic cavitation peening.
    Bai F; Long Y; Saalbach KA; Twiefel J
    Ultrasonics; 2019 Mar; 93():130-138. PubMed ID: 30508727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A numerical model for the study of the difference frequency generated from nonlinear mixing of standing ultrasonic waves in bubbly liquids.
    Tejedor Sastre MT; Vanhille C
    Ultrason Sonochem; 2017 Jan; 34():881-888. PubMed ID: 27773316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic wave propagation in bubbly flow with gas, vapor or their mixtures.
    Zhang Y; Guo Z; Gao Y; Du X
    Ultrason Sonochem; 2018 Jan; 40(Pt B):40-45. PubMed ID: 28389057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sound propagation in water containing large tethered spherical encapsulated gas bubbles with resonance frequencies in the 50 Hz to 100 Hz range.
    Lee KM; Hinojosa KT; Wochner MS; Argo TF; Wilson PS; Mercier RS
    J Acoust Soc Am; 2011 Nov; 130(5):3325-32. PubMed ID: 22088005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wake attenuation in large Reynolds number dispersed two-phase flows.
    Risso F; Roig V; Amoura Z; Riboux G; Billet AM
    Philos Trans A Math Phys Eng Sci; 2008 Jun; 366(1873):2177-90. PubMed ID: 18348974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions.
    Kang ST; Huang YL; Yeh CK
    Ultrasound Med Biol; 2014 Mar; 40(3):551-61. PubMed ID: 24433748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passive Underwater Noise Attenuation Using Large Encapsulated Air Bubbles.
    Lee KM; Wochner MS; Wilson PS
    Adv Exp Med Biol; 2016; 875():607-14. PubMed ID: 26611010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined experimental and theoretical investigation of the gas bubble motion in an acoustic field.
    Ma X; Xing T; Huang B; Li Q; Yang Y
    Ultrason Sonochem; 2018 Jan; 40(Pt A):480-487. PubMed ID: 28946449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.