These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 15704421)

  • 1. Delay dependence for the origin of the nonlinear derived transient evoked otoacoustic emission.
    Withnell RH; McKinley S
    J Acoust Soc Am; 2005 Jan; 117(1):281-91. PubMed ID: 15704421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of intermodulation distortion in transient-evoked otoacoustic emissions.
    Yates GK; Withnell RH
    Hear Res; 1999 Oct; 136(1-2):49-64. PubMed ID: 10511624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cochlear delays measured with amplitude-modulated tone-burst-evoked OAEs.
    Goodman SS; Withnell RH; De Boer E; Lilly DJ; Nuttall AL
    Hear Res; 2004 Feb; 188(1-2):57-69. PubMed ID: 14759571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The origin of SFOAE microstructure in the guinea pig.
    Goodman SS; Withnell RH; Shera CA
    Hear Res; 2003 Sep; 183(1-2):7-17. PubMed ID: 13679133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of stimulus bandwidth on the nonlinear-derived tone-burst-evoked otoacoustic emission.
    Lewis JD; Goodman SS
    J Assoc Res Otolaryngol; 2014 Dec; 15(6):915-31. PubMed ID: 25245497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of the transient-evoked otoacoustic emission produced by the addition of a pure tone in the guinea pig.
    Withnell RH; Yates GK
    J Acoust Soc Am; 1998 Jul; 104(1):344-9. PubMed ID: 9670527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions.
    Kalluri R; Shera CA
    J Acoust Soc Am; 2007 Apr; 121(4):2097-110. PubMed ID: 17471725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In search of basal distortion product generators.
    Withnell RH; Lodde J
    J Acoust Soc Am; 2006 Oct; 120(4):2116-23. PubMed ID: 17069309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient evoked otoacoustic emission input/output function and cochlear reflectivity: experiment and model.
    Sisto R; Moleti A
    J Acoust Soc Am; 2008 Nov; 124(5):2995-3008. PubMed ID: 19045787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of click intensity on click-evoked otoacoustic emission waveforms: implications for the origin of emissions.
    Carvalho S; Büki B; Bonfils P; Avan P
    Hear Res; 2003 Jan; 175(1-2):215-25. PubMed ID: 12527140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of DPOAEs in the guinea pig.
    Withnell RH; Shaffer LA; Talmadge CL
    Hear Res; 2003 Apr; 178(1-2):106-17. PubMed ID: 12684183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs.
    Shera CA; Guinan JJ
    J Acoust Soc Am; 1999 Feb; 105(2 Pt 1):782-98. PubMed ID: 9972564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal nonlinearity revealed by transient evoked otoacoustic emissions recorded to trains of multiple clicks.
    Hine JE; Thornton AR
    Hear Res; 2002 Mar; 165(1-2):128-41. PubMed ID: 12031522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reflection-Source Emissions Evoked with Clicks and Frequency Sweeps: Comparisons Across Levels.
    Charaziak KK; Shera CA
    J Assoc Res Otolaryngol; 2021 Dec; 22(6):641-658. PubMed ID: 34606020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-frequency analyses of transient-evoked stimulus-frequency and distortion-product otoacoustic emissions: testing cochlear model predictions.
    Konrad-Martin D; Keefe DH
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2021-43. PubMed ID: 14587602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Level dependence of the nonlinear-distortion component of distortion-product otoacoustic emissions in humans.
    Zelle D; Thiericke JP; Dalhoff E; Gummer AW
    J Acoust Soc Am; 2015 Dec; 138(6):3475-90. PubMed ID: 26723305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient evoked otoacoustic emission latency and cochlear tuning at different stimulus levels.
    Sisto R; Moleti A
    J Acoust Soc Am; 2007 Oct; 122(4):2183-90. PubMed ID: 17902854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distortion product otoacoustic emissions and basilar membrane vibration in the 6-9 kHz region of sensitive chinchilla cochleae.
    Rhode WS
    J Acoust Soc Am; 2007 Nov; 122(5):2725-37. PubMed ID: 18189565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amplitude and phase of distortion product otoacoustic emissions in the guinea pig in an (f1 ,f2) area study.
    Schneider S; Prijs VF; Schoonhoven R
    J Acoust Soc Am; 2003 Jun; 113(6):3285-96. PubMed ID: 12822801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A second, low-frequency mode of vibration in the intact mammalian cochlea.
    Lukashkin AN; Russell IJ
    J Acoust Soc Am; 2003 Mar; 113(3):1544-50. PubMed ID: 12656389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.