BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 15704836)

  • 1. [The research of assembling animal models of keloid employing the method of tissue engineering].
    Wang H; Luo S
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Jan; 19(1):23-7. PubMed ID: 15704836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Construction of animal models of keloid by tissue engineering].
    Wang HB; Luo SK
    Di Yi Jun Yi Da Xue Xue Bao; 2005 Jul; 25(7):815-9, 832. PubMed ID: 16027076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of an animal model for human keloid scars using tissue engineering method.
    Wang H; Luo S
    J Burn Care Res; 2013; 34(4):439-46. PubMed ID: 23222148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional poly lactic-co-glycolic acid scaffold containing autologous platelet-rich plasma supports keloid fibroblast growth and contributes to keloid formation in a nude mouse model.
    Chen C; Wang H; Zhu G; Sun Z; Xu X; Li F; Luo S
    J Dermatol Sci; 2018 Jan; 89(1):67-76. PubMed ID: 29122407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implantation of human keloid into athymic mice.
    Estrem SA; Domayer M; Bardach J; Cram AE
    Laryngoscope; 1987 Oct; 97(10):1214-8. PubMed ID: 3309514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh.
    Chen G; Sato T; Ohgushi H; Ushida T; Tateishi T; Tanaka J
    Biomaterials; 2005 May; 26(15):2559-66. PubMed ID: 15585258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D modeling of keloid scars in vitro by cell and tissue engineering.
    Suttho D; Mankhetkorn S; Binda D; Pazart L; Humbert P; Rolin G
    Arch Dermatol Res; 2017 Jan; 309(1):55-62. PubMed ID: 27942931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of poly(lactic-co-glycolic acid) scaffolds containing silk fibroin scaffolds for tissue engineering applications.
    Ju HW; Sheikh FA; Moon BM; Park HJ; Lee OJ; Kim JH; Eun JJ; Khang G; Park CH
    J Biomed Mater Res A; 2014 Aug; 102(8):2713-24. PubMed ID: 24026912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Experimental studies on a new bone tissue engineered scaffold biomaterials combined with cultured marrow stromal stem cells in vitro].
    Pan H; Zheng Q; Guo X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Jan; 21(1):65-9. PubMed ID: 17305008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of keloid formation in humans and laboratory animals.
    Khorshid FA
    Med Sci Monit; 2005 Jul; 11(7):BR212-9. PubMed ID: 15990682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering.
    Hwang CM; Khademhosseini A; Park Y; Sun K; Lee SH
    Langmuir; 2008 Jun; 24(13):6845-51. PubMed ID: 18512874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering vascularized soft tissue flaps in an animal model using human adipose-derived stem cells and VEGF+PLGA/PEG microspheres on a collagen-chitosan scaffold with a flow-through vascular pedicle.
    Zhang Q; Hubenak J; Iyyanki T; Alred E; Turza KC; Davis G; Chang EI; Branch-Brooks CD; Beahm EK; Butler CE
    Biomaterials; 2015 Dec; 73():198-213. PubMed ID: 26410787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for cartilage tissue engineering.
    Kang SW; Jeon O; Kim BS
    Tissue Eng; 2005; 11(3-4):438-47. PubMed ID: 15869422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering.
    Dai W; Kawazoe N; Lin X; Dong J; Chen G
    Biomaterials; 2010 Mar; 31(8):2141-52. PubMed ID: 19962751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-delivery of dexamethasone and green tea polyphenols using electrospun ultrafine fibers for effective treatment of keloid.
    Li J; Fu R; Li L; Yang G; Ding S; Zhong Z; Zhou S
    Pharm Res; 2014 Jul; 31(7):1632-43. PubMed ID: 24395405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three step derivation of cartilage like tissue from human embryonic stem cells by 2D-3D sequential culture in vitro and further implantation in vivo on alginate/PLGA scaffolds.
    Bai HY; Chen GA; Mao GH; Song TR; Wang YX
    J Biomed Mater Res A; 2010 Aug; 94(2):539-46. PubMed ID: 20186773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Replication of pathological scar in nude mice].
    Jin PS; Cen Y; Liu XX; Chen JJ; Xu XW; Liu Y; Li JJ; Wang Y
    Zhonghua Shao Shang Za Zhi; 2007 Apr; 23(2):126-9. PubMed ID: 17649888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Open macroporous poly(lactic-co-glycolic Acid) microspheres as an injectable scaffold for cartilage tissue engineering.
    Kang SW; La WG; Kim BS
    J Biomater Sci Polym Ed; 2009; 20(3):399-409. PubMed ID: 19192363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2.
    Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M
    J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cell leakproof PLGA-collagen hybrid scaffold for cartilage tissue engineering.
    Kawazoe N; Inoue C; Tateishi T; Chen G
    Biotechnol Prog; 2010; 26(3):819-26. PubMed ID: 20039440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.