These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 15705525)

  • 1. Increasing the speed of relaxometry-based compartmental analysis experiments in STEAM spectroscopy.
    Knight-Scott J; Dunham SA; Shanbhag DD
    J Magn Reson; 2005 Mar; 173(1):169-74. PubMed ID: 15705525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective maximization of (31)P MR spectroscopic signals of in vivo human brain metabolites at 3T.
    Blenman RA; Port JD; Felmlee JP
    J Magn Reson Imaging; 2007 Mar; 25(3):628-34. PubMed ID: 17279535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absolute metabolite concentrations calibrated using the total water signal in brain (1)H MRS.
    Brief EE; Moll R; Li DK; Mackay AL
    NMR Biomed; 2009 Apr; 22(3):349-54. PubMed ID: 19107764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of multiple inversion recovery for suppression of macromolecule resonances in short echo time (1)H NMR spectroscopy of human brain.
    Knight-Scott J
    J Magn Reson; 1999 Sep; 140(1):228-34. PubMed ID: 10479566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative prognostic utilities of early quantitative magnetic resonance imaging spin-spin relaxometry and proton magnetic resonance spectroscopy in neonatal encephalopathy.
    Shanmugalingam S; Thornton JS; Iwata O; Bainbridge A; O'Brien FE; Priest AN; Ordidge RJ; Cady EB; Wyatt JS; Robertson NJ
    Pediatrics; 2006 Oct; 118(4):1467-77. PubMed ID: 17015537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of J modulation on spin-echo acquisition and calculation of spin-spin relaxation time (T2) from the J-suppressed data set.
    Yaman A
    Physiol Chem Phys Med NMR; 2000; 32(1):75-81. PubMed ID: 10970050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constrained modeling for spectroscopic measurement of bi-exponential spin-lattice relaxation of water in vivo.
    Knight-Scott J; Farace E; Simnad VI; Siragy HM; Manning CA
    Magn Reson Imaging; 2002 Nov; 20(9):681-9. PubMed ID: 12477565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton T2 relaxation time of J-coupled cerebral metabolites in rat brain at 9.4 T.
    Xin L; Gambarota G; Mlynárik V; Gruetter R
    NMR Biomed; 2008 May; 21(4):396-401. PubMed ID: 17907262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic changes in the normal ageing brain: consistent findings from short and long echo time proton spectroscopy.
    Gruber S; Pinker K; Riederer F; Chmelík M; Stadlbauer A; Bittsanský M; Mlynárik V; Frey R; Serles W; Bodamer O; Moser E
    Eur J Radiol; 2008 Nov; 68(2):320-7. PubMed ID: 17964104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurements of tissue T1 spin-lattice relaxation time and discrimination of large draining veins using transient EPI data sets in BOLD-weighted fMRI acquisitions.
    Mazaheri Y; Biswal BB; Ward BD; Hyde JS
    Neuroimage; 2006 Aug; 32(2):603-15. PubMed ID: 16713305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. White matter abnormalities in autism detected through transverse relaxation time imaging.
    Hendry J; DeVito T; Gelman N; Densmore M; Rajakumar N; Pavlosky W; Williamson PC; Thompson PM; Drost DJ; Nicolson R
    Neuroimage; 2006 Feb; 29(4):1049-57. PubMed ID: 16214373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repeatability of long and short echo-time in vivo proton chemical-shift imaging.
    Marshall I; Wardlaw J; Graham C; Murray L; Blane A
    Neuroradiology; 2002 Dec; 44(12):973-80. PubMed ID: 12483441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative brain proton MR spectroscopy based on measurement of the relaxation time T1 of water.
    Bajzik G; Auer T; Bogner P; Aradi M; Kotek G; Repa I; Doczi T; Schwarcz A
    J Magn Reson Imaging; 2008 Jul; 28(1):34-8. PubMed ID: 18581350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrashort TE spectroscopic imaging (UTESI): application to the imaging of short T2 relaxation tissues in the musculoskeletal system.
    Du J; Takahashi AM; Chung CB
    J Magn Reson Imaging; 2009 Feb; 29(2):412-21. PubMed ID: 19161197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multispectral quantitative magnetic resonance imaging of brain iron stores: a theoretical perspective.
    Jara H; Sakai O; Mankal P; Irving RP; Norbash AM
    Top Magn Reson Imaging; 2006 Feb; 17(1):19-30. PubMed ID: 17179894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance imaging and T2 relaxometry of human median nerve at 7 Tesla.
    Gambarota G; Veltien A; Klomp D; Van Alfen N; Mulkern RV; Heerschap A
    Muscle Nerve; 2007 Sep; 36(3):368-73. PubMed ID: 17587225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo multiecho T2 relaxation measurements using variable TR to decrease scan time.
    Laule C; Kolind SH; Bjarnason TA; Li DK; MacKay AL
    Magn Reson Imaging; 2007 Jul; 25(6):834-9. PubMed ID: 17482413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative and qualitative assessment of reactive hematopoietic bone marrow in aplastic anemia using MR spectroscopy with variable echo times.
    Amano Y; Kumazaki T
    Skeletal Radiol; 2002 Jan; 31(1):19-24. PubMed ID: 11807588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic assessment of the human pons by in vivo proton magnetic resonance spectroscopy.
    Guan JT; Xu XH; Geng YQ; Yu XJ; Wu RH
    Brain Res; 2008 Aug; 1227():221-5. PubMed ID: 18602897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reproducibility of quantitative cerebral T2 relaxometry, diffusion tensor imaging, and 1H magnetic resonance spectroscopy at 3.0 Tesla.
    Jansen JF; Kooi ME; Kessels AG; Nicolay K; Backes WH
    Invest Radiol; 2007 Jun; 42(6):327-37. PubMed ID: 17507802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.