These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 15706081)
1. Peroxiredoxin-mediated redox regulation of the nuclear localization of Yap1, a transcription factor in budding yeast. Okazaki S; Naganuma A; Kuge S Antioxid Redox Signal; 2005; 7(3-4):327-34. PubMed ID: 15706081 [TBL] [Abstract][Full Text] [Related]
2. A major peroxiredoxin-induced activation of Yap1 transcription factor is mediated by reduction-sensitive disulfide bonds and reveals a low level of transcriptional activation. Tachibana T; Okazaki S; Murayama A; Naganuma A; Nomoto A; Kuge S J Biol Chem; 2009 Feb; 284(7):4464-72. PubMed ID: 19106090 [TBL] [Abstract][Full Text] [Related]
3. Chemical dissection of an essential redox switch in yeast. Paulsen CE; Carroll KS Chem Biol; 2009 Feb; 16(2):217-25. PubMed ID: 19230722 [TBL] [Abstract][Full Text] [Related]
4. Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor. Veal EA; Ross SJ; Malakasi P; Peacock E; Morgan BA J Biol Chem; 2003 Aug; 278(33):30896-904. PubMed ID: 12743123 [TBL] [Abstract][Full Text] [Related]
5. Differential oxidant tolerance determined by the key transcription factor Yap1 is controlled by levels of the Yap1-binding protein, Ybp1. Gulshan K; Lee SS; Moye-Rowley WS J Biol Chem; 2011 Sep; 286(39):34071-81. PubMed ID: 21844193 [TBL] [Abstract][Full Text] [Related]
6. Peroxiredoxin Ahp1 acts as a receptor for alkylhydroperoxides to induce disulfide bond formation in the Cad1 transcription factor. Iwai K; Naganuma A; Kuge S J Biol Chem; 2010 Apr; 285(14):10597-604. PubMed ID: 20145245 [TBL] [Abstract][Full Text] [Related]
7. Multistep disulfide bond formation in Yap1 is required for sensing and transduction of H2O2 stress signal. Okazaki S; Tachibana T; Naganuma A; Mano N; Kuge S Mol Cell; 2007 Aug; 27(4):675-88. PubMed ID: 17707237 [TBL] [Abstract][Full Text] [Related]
8. A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Delaunay A; Pflieger D; Barrault MB; Vinh J; Toledano MB Cell; 2002 Nov; 111(4):471-81. PubMed ID: 12437921 [TBL] [Abstract][Full Text] [Related]
9. Nuclear thioredoxin peroxidase Dot5 in Saccharomyces cerevisiae: roles in oxidative stress response and disruption of telomeric silencing. Izawa S; Kuroki N; Inoue Y Appl Microbiol Biotechnol; 2004 Mar; 64(1):120-4. PubMed ID: 12925864 [TBL] [Abstract][Full Text] [Related]
10. Gpx3-dependent responses against oxidative stress in Saccharomyces cerevisiae. Kho CW; Lee PY; Bae KH; Kang S; Cho S; Lee DH; Sun CH; Yi GS; Park BC; Park SG J Microbiol Biotechnol; 2008 Feb; 18(2):270-82. PubMed ID: 18309271 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamic basis for redox regulation of the Yap1 signal transduction pathway. Mason JT; Kim SK; Knaff DB; Wood MJ Biochemistry; 2006 Nov; 45(45):13409-17. PubMed ID: 17087494 [TBL] [Abstract][Full Text] [Related]
12. Two redox centers within Yap1 for H2O2 and thiol-reactive chemicals signaling. Azevedo D; Tacnet F; Delaunay A; Rodrigues-Pousada C; Toledano MB Free Radic Biol Med; 2003 Oct; 35(8):889-900. PubMed ID: 14556853 [TBL] [Abstract][Full Text] [Related]
13. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Biteau B; Labarre J; Toledano MB Nature; 2003 Oct; 425(6961):980-4. PubMed ID: 14586471 [TBL] [Abstract][Full Text] [Related]
14. Structural basis for redox regulation of Yap1 transcription factor localization. Wood MJ; Storz G; Tjandra N Nature; 2004 Aug; 430(7002):917-21. PubMed ID: 15318225 [TBL] [Abstract][Full Text] [Related]
15. Disulfide biochemistry in 2-cys peroxiredoxin: requirement of Glu50 and Arg146 for the reduction of yeast Tsa1 by thioredoxin. Tairum CA; de Oliveira MA; Horta BB; Zara FJ; Netto LE J Mol Biol; 2012 Nov; 424(1-2):28-41. PubMed ID: 22985967 [TBL] [Abstract][Full Text] [Related]