BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

663 related articles for article (PubMed ID: 15706085)

  • 21. The molecular mechanism of Nrf2-Keap1 signaling pathway in the antioxidant defense response induced by BaP in the scallop Chlamys farreri.
    Wang H; Pan L; Xu R; Si L; Zhang X
    Fish Shellfish Immunol; 2019 Sep; 92():489-499. PubMed ID: 31220575
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Zinc-binding triggers a conformational-switch in the cullin-3 substrate adaptor protein KEAP1 that controls transcription factor NRF2.
    McMahon M; Swift SR; Hayes JD
    Toxicol Appl Pharmacol; 2018 Dec; 360():45-57. PubMed ID: 30261176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Keap1-Nrf2 system and diabetes mellitus.
    Uruno A; Yagishita Y; Yamamoto M
    Arch Biochem Biophys; 2015 Jan; 566():76-84. PubMed ID: 25528168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway.
    Zhang DD; Lo SC; Sun Z; Habib GM; Lieberman MW; Hannink M
    J Biol Chem; 2005 Aug; 280(34):30091-9. PubMed ID: 15983046
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers.
    Wakabayashi N; Dinkova-Kostova AT; Holtzclaw WD; Kang MI; Kobayashi A; Yamamoto M; Kensler TW; Talalay P
    Proc Natl Acad Sci U S A; 2004 Feb; 101(7):2040-5. PubMed ID: 14764894
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The rise of antioxidant signaling--the evolution and hormetic actions of Nrf2.
    Maher J; Yamamoto M
    Toxicol Appl Pharmacol; 2010 Apr; 244(1):4-15. PubMed ID: 20122947
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants.
    Dinkova-Kostova AT; Holtzclaw WD; Cole RN; Itoh K; Wakabayashi N; Katoh Y; Yamamoto M; Talalay P
    Proc Natl Acad Sci U S A; 2002 Sep; 99(18):11908-13. PubMed ID: 12193649
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Discovery of the negative regulator of Nrf2, Keap1: a historical overview.
    Itoh K; Mimura J; Yamamoto M
    Antioxid Redox Signal; 2010 Dec; 13(11):1665-78. PubMed ID: 20446768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Site-directed mutagenesis of cysteine to serine in the DNA binding region of Nrf2 decreases its capacity to upregulate antioxidant response element-mediated expression and antioxidant induction of NAD(P)H:quinone oxidoreductase1 gene.
    Bloom D; Dhakshinamoorthy S; Jaiswal AK
    Oncogene; 2002 Mar; 21(14):2191-200. PubMed ID: 11948402
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation.
    Wakabayashi N; Itoh K; Wakabayashi J; Motohashi H; Noda S; Takahashi S; Imakado S; Kotsuji T; Otsuka F; Roop DR; Harada T; Engel JD; Yamamoto M
    Nat Genet; 2003 Nov; 35(3):238-45. PubMed ID: 14517554
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Keap1-Nrf2-antioxidant response element pathway: a review of its regulation by melatonin and the proteasome.
    Vriend J; Reiter RJ
    Mol Cell Endocrinol; 2015 Feb; 401():213-20. PubMed ID: 25528518
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nrf2 controls constitutive and inducible expression of ARE-driven genes through a dynamic pathway involving nucleocytoplasmic shuttling by Keap1.
    Nguyen T; Sherratt PJ; Nioi P; Yang CS; Pickett CB
    J Biol Chem; 2005 Sep; 280(37):32485-92. PubMed ID: 16000310
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes.
    Kang MI; Kobayashi A; Wakabayashi N; Kim SG; Yamamoto M
    Proc Natl Acad Sci U S A; 2004 Feb; 101(7):2046-51. PubMed ID: 14764898
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm.
    Zipper LM; Mulcahy RT
    J Biol Chem; 2002 Sep; 277(39):36544-52. PubMed ID: 12145307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival.
    Kwak MK; Wakabayashi N; Itoh K; Motohashi H; Yamamoto M; Kensler TW
    J Biol Chem; 2003 Mar; 278(10):8135-45. PubMed ID: 12506115
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain.
    Itoh K; Wakabayashi N; Katoh Y; Ishii T; Igarashi K; Engel JD; Yamamoto M
    Genes Dev; 1999 Jan; 13(1):76-86. PubMed ID: 9887101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultraviolet A irradiation induces NF-E2-related factor 2 activation in dermal fibroblasts: protective role in UVA-induced apoptosis.
    Hirota A; Kawachi Y; Itoh K; Nakamura Y; Xu X; Banno T; Takahashi T; Yamamoto M; Otsuka F
    J Invest Dermatol; 2005 Apr; 124(4):825-32. PubMed ID: 15816842
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nrf2 signaling in coordinated activation of antioxidant gene expression.
    Jaiswal AK
    Free Radic Biol Med; 2004 May; 36(10):1199-207. PubMed ID: 15110384
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles.
    Itoh K; Wakabayashi N; Katoh Y; Ishii T; O'Connor T; Yamamoto M
    Genes Cells; 2003 Apr; 8(4):379-91. PubMed ID: 12653965
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products.
    Levonen AL; Landar A; Ramachandran A; Ceaser EK; Dickinson DA; Zanoni G; Morrow JD; Darley-Usmar VM
    Biochem J; 2004 Mar; 378(Pt 2):373-82. PubMed ID: 14616092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.