BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 15706086)

  • 1. Redox regulation of NF-kappaB activation: distinct redox regulation between the cytoplasm and the nucleus.
    Kabe Y; Ando K; Hirao S; Yoshida M; Handa H
    Antioxid Redox Signal; 2005; 7(3-4):395-403. PubMed ID: 15706086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox regulation of nuclear post-translational modifications during NF-kappaB activation.
    Gloire G; Piette J
    Antioxid Redox Signal; 2009 Sep; 11(9):2209-22. PubMed ID: 19203223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple redox regulation in NF-kappaB transcription factor activation.
    Piette J; Piret B; Bonizzi G; Schoonbroodt S; Merville MP; Legrand-Poels S; Bours V
    Biol Chem; 1997 Nov; 378(11):1237-45. PubMed ID: 9426183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaB.
    Hirota K; Murata M; Sachi Y; Nakamura H; Takeuchi J; Mori K; Yodoi J
    J Biol Chem; 1999 Sep; 274(39):27891-7. PubMed ID: 10488136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A CRM1-dependent nuclear export signal controls nucleocytoplasmic translocation of HSCARG, which regulates NF-κB activity.
    Zhang M; Hu B; Li T; Peng Y; Guan J; Lai S; Zheng X
    Traffic; 2012 Jun; 13(6):790-9. PubMed ID: 22348310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of NF-kappaB in normal rat kidney epithelial (NRK52E) cells is mediated via a redox-insensitive, calcium-dependent pathway.
    Woods JS; Ellis ME; Dieguez-Acuña FJ; Corral J
    Toxicol Appl Pharmacol; 1999 Feb; 154(3):219-27. PubMed ID: 9931281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alteration of subcellular redox equilibrium and the consequent oxidative modification of nuclear factor kappaB are critical for anticancer cytotoxicity by emodin, a reactive oxygen species-producing agent.
    Jing Y; Yang J; Wang Y; Li H; Chen Y; Hu Q; Shi G; Tang X; Yi J
    Free Radic Biol Med; 2006 Jun; 40(12):2183-97. PubMed ID: 16785032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-sensitive kinases of the nuclear factor-kappaB signaling pathway.
    Pantano C; Reynaert NL; van der Vliet A; Janssen-Heininger YM
    Antioxid Redox Signal; 2006; 8(9-10):1791-806. PubMed ID: 16987032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct association of hepatopoietin with thioredoxin constitutes a redox signal transduction in activation of AP-1/NF-kappaB.
    Li Y; Liu W; Xing G; Tian C; Zhu Y; He F
    Cell Signal; 2005 Aug; 17(8):985-96. PubMed ID: 15894171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dehydroepiandrosterone modulates nuclear factor-kappaB activation in hippocampus of diabetic rats.
    Aragno M; Mastrocola R; Brignardello E; Catalano M; Robino G; Manti R; Parola M; Danni O; Boccuzzi G
    Endocrinology; 2002 Sep; 143(9):3250-8. PubMed ID: 12193536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox activation of Nrf2 & NF-κB: a double end sword?
    Buelna-Chontal M; Zazueta C
    Cell Signal; 2013 Dec; 25(12):2548-57. PubMed ID: 23993959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 7-ketocholesterol induces apoptosis in differentiated PC12 cells via reactive oxygen species-dependent activation of NF-κB and Akt pathways.
    Jang ER; Lee CS
    Neurochem Int; 2011 Jan; 58(1):52-9. PubMed ID: 21035514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression.
    Rahman I; Marwick J; Kirkham P
    Biochem Pharmacol; 2004 Sep; 68(6):1255-67. PubMed ID: 15313424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NF-κB signaling pathway and free radical impact.
    Siomek A
    Acta Biochim Pol; 2012; 59(3):323-31. PubMed ID: 22855720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation and function of IKK and IKK-related kinases.
    Häcker H; Karin M
    Sci STKE; 2006 Oct; 2006(357):re13. PubMed ID: 17047224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear and cytoplasmic peroxiredoxin-1 differentially regulate NF-kappaB activities.
    Hansen JM; Moriarty-Craige S; Jones DP
    Free Radic Biol Med; 2007 Jul; 43(2):282-8. PubMed ID: 17603937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB.
    Janssen-Heininger YM; Poynter ME; Baeuerle PA
    Free Radic Biol Med; 2000 May; 28(9):1317-27. PubMed ID: 10924851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of NF-kappaB in the regulation of cell stress responses.
    Wang T; Zhang X; Li JJ
    Int Immunopharmacol; 2002 Oct; 2(11):1509-20. PubMed ID: 12433052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morin modulates the oxidative stress-induced NF-kappaB pathway through its anti-oxidant activity.
    Kim JM; Lee EK; Park G; Kim MK; Yokozawa T; Yu BP; Chung HY
    Free Radic Res; 2010 Apr; 44(4):454-61. PubMed ID: 20187708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The NF-kappa B activation pathway: a paradigm in information transfer from membrane to nucleus.
    Rothwarf DM; Karin M
    Sci STKE; 1999 Oct; 1999(5):RE1. PubMed ID: 11865184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.