BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 15706492)

  • 1. An extension and novel solution to the (l,d)-motif challenge problem.
    Styczynski MP; Jensen KL; Rigoutsos I; Stephanopoulos GN
    Genome Inform; 2004; 15(2):63-71. PubMed ID: 15706492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MUSA: a parameter free algorithm for the identification of biologically significant motifs.
    Mendes ND; Casimiro AC; Santos PM; Sá-Correia I; Oliveira AL; Freitas AT
    Bioinformatics; 2006 Dec; 22(24):2996-3002. PubMed ID: 17068086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finding motifs from all sequences with and without binding sites.
    Leung HC; Chin FY
    Bioinformatics; 2006 Sep; 22(18):2217-23. PubMed ID: 16870937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A generic motif discovery algorithm for sequential data.
    Jensen KL; Styczynski MP; Rigoutsos I; Stephanopoulos GN
    Bioinformatics; 2006 Jan; 22(1):21-8. PubMed ID: 16257985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Informative priors based on transcription factor structural class improve de novo motif discovery.
    Narlikar L; Gordân R; Ohler U; Hartemink AJ
    Bioinformatics; 2006 Jul; 22(14):e384-92. PubMed ID: 16873497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finding motifs using random projections.
    Buhler J; Tompa M
    J Comput Biol; 2002; 9(2):225-42. PubMed ID: 12015879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid Gibbs-sampling algorithm for challenging motif discovery: GibbsDST.
    Shida K
    Genome Inform; 2006; 17(2):3-13. PubMed ID: 17503374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RankMotif++: a motif-search algorithm that accounts for relative ranks of K-mers in binding transcription factors.
    Chen X; Hughes TR; Morris Q
    Bioinformatics; 2007 Jul; 23(13):i72-9. PubMed ID: 17646348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphical approach to weak motif recognition.
    Yang X; Rajapakse JC
    Genome Inform; 2004; 15(2):52-62. PubMed ID: 15706491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. cWINNOWER algorithm for finding fuzzy dna motifs.
    Liang S; Samanta MP; Biegel BA
    J Bioinform Comput Biol; 2004 Mar; 2(1):47-60. PubMed ID: 15272432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MotifCut: regulatory motifs finding with maximum density subgraphs.
    Fratkin E; Naughton BT; Brutlag DL; Batzoglou S
    Bioinformatics; 2006 Jul; 22(14):e150-7. PubMed ID: 16873465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Gibbs sampler for identification of symmetrically structured, spaced DNA motifs with improved estimation of the signal length.
    Favorov AV; Gelfand MS; Gerasimova AV; Ravcheev DA; Mironov AA; Makeev VJ
    Bioinformatics; 2005 May; 21(10):2240-5. PubMed ID: 15728117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-organizing neural networks to support the discovery of DNA-binding motifs.
    Mahony S; Benos PV; Smith TJ; Golden A
    Neural Netw; 2006; 19(6-7):950-62. PubMed ID: 16839740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovering sequence motifs.
    Bailey TL
    Methods Mol Biol; 2008; 452():231-51. PubMed ID: 18566768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved heuristic algorithm for finding motif signals in DNA sequences.
    Huang CW; Lee WS; Hsieh SY
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(4):959-75. PubMed ID: 20855921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of generic spaced motifs using submotif pattern mining.
    Wijaya E; Rajaraman K; Yiu SM; Sung WK
    Bioinformatics; 2007 Jun; 23(12):1476-85. PubMed ID: 17483509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast exact algorithms for the closest string and substring problems with application to the planted (L, d)-motif model.
    Chen ZZ; Wang L
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1400-10. PubMed ID: 21282867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. cWINNOWER algorithm for finding fuzzy DNA motifs.
    Liang S
    Proc IEEE Comput Soc Bioinform Conf; 2003; 2():260-5. PubMed ID: 16452801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient sequential and parallel algorithms for finding edit distance based motifs.
    Pal S; Xiao P; Rajasekaran S
    BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):465. PubMed ID: 27557423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finding sequence motifs in prokaryotic genomes--a brief practical guide for a microbiologist.
    Mrázek J
    Brief Bioinform; 2009 Sep; 10(5):525-36. PubMed ID: 19553402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.