These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 15706523)
1. An in-silico method for prediction of polyadenylation signals in human sequences. Liu H; Han H; Li J; Wong L Genome Inform; 2003; 14():84-93. PubMed ID: 15706523 [TBL] [Abstract][Full Text] [Related]
2. Using amino acid patterns to accurately predict translation initiation sites. Liu H; Han H; Li J; Wong L In Silico Biol; 2004; 4(3):255-69. PubMed ID: 15724279 [TBL] [Abstract][Full Text] [Related]
3. Prediction of non-canonical polyadenylation signals in human genomic sequences based on a novel algorithm using a fuzzy membership function. Kamasawa M; Horiuchi J J Biosci Bioeng; 2009 May; 107(5):569-78. PubMed ID: 19393560 [TBL] [Abstract][Full Text] [Related]
4. Prediction of polyadenylation signals in human DNA sequences using nucleotide frequencies. Ahmed F; Kumar M; Raghava GP In Silico Biol; 2009; 9(3):135-48. PubMed ID: 19795571 [TBL] [Abstract][Full Text] [Related]
5. In silico analysis of EST and genomic sequences allowed the prediction of cis-regulatory elements for Entamoeba histolytica mRNA polyadenylation. Zamorano A; López-Camarillo C; Orozco E; Weber C; Guillen N; Marchat LA Comput Biol Chem; 2008 Aug; 32(4):256-63. PubMed ID: 18514032 [TBL] [Abstract][Full Text] [Related]
6. Recognition of polyadenylation sites from Arabidopsis genomic sequences. Koh CH; Wong L Genome Inform; 2007; 19():73-82. PubMed ID: 18546506 [TBL] [Abstract][Full Text] [Related]
7. Recognizing shorter coding regions of human genes based on the statistics of stop codons. Wang Y; Zhang CT; Dong P Biopolymers; 2002 Mar; 63(3):207-16. PubMed ID: 11787008 [TBL] [Abstract][Full Text] [Related]
8. Prediction of mRNA polyadenylation sites by support vector machine. Cheng Y; Miura RM; Tian B Bioinformatics; 2006 Oct; 22(19):2320-5. PubMed ID: 16870936 [TBL] [Abstract][Full Text] [Related]
9. Poly(A) motif prediction using spectral latent features from human DNA sequences. Xie B; Jankovic BR; Bajic VB; Song L; Gao X Bioinformatics; 2013 Jul; 29(13):i316-25. PubMed ID: 23813000 [TBL] [Abstract][Full Text] [Related]
10. A classification-based prediction model of messenger RNA polyadenylation sites. Ji G; Wu X; Shen Y; Huang J; Quinn Li Q J Theor Biol; 2010 Aug; 265(3):287-96. PubMed ID: 20546757 [TBL] [Abstract][Full Text] [Related]
11. Predicting the phosphorylation sites using hidden Markov models and machine learning methods. Senawongse P; Dalby AR; Yang ZR J Chem Inf Model; 2005; 45(4):1147-52. PubMed ID: 16045309 [TBL] [Abstract][Full Text] [Related]
12. An improved poly(A) motifs recognition method based on decision level fusion. Zhang S; Han J; Liu J; Zheng J; Liu R Comput Biol Chem; 2015 Feb; 54():49-56. PubMed ID: 25594576 [TBL] [Abstract][Full Text] [Related]
13. Identification and characterization of polyadenylation signal (PAS) variants in human genomic sequences based on modified EST clustering. Kamasawa M; Horiuchi J In Silico Biol; 2008; 8(3-4):347-61. PubMed ID: 19032167 [TBL] [Abstract][Full Text] [Related]
14. Characterization and prediction of mRNA alternative polyadenylation sites in rice genes. Wu X; Zhao C; Su Y Biomed Mater Eng; 2014; 24(6):3779-85. PubMed ID: 25227094 [TBL] [Abstract][Full Text] [Related]
15. Prediction of methylated CpGs in DNA sequences using a support vector machine. Bhasin M; Zhang H; Reinherz EL; Reche PA FEBS Lett; 2005 Aug; 579(20):4302-8. PubMed ID: 16051225 [TBL] [Abstract][Full Text] [Related]
16. Features of coding and noncoding sequences based on 3-tuple distributions. Fu Q; Qian MP; Chen LB; Zhu YX Yi Chuan Xue Bao; 2005 Oct; 32(10):1018-26. PubMed ID: 16252696 [TBL] [Abstract][Full Text] [Related]
17. In silico prediction of mRNA poly(A) sites in Chlamydomonas reinhardtii. Wu X; Ji G; Zeng Y Mol Genet Genomics; 2012 Dec; 287(11-12):895-907. PubMed ID: 23108961 [TBL] [Abstract][Full Text] [Related]
18. Predicting rRNA-, RNA-, and DNA-binding proteins from primary structure with support vector machines. Yu X; Cao J; Cai Y; Shi T; Li Y J Theor Biol; 2006 May; 240(2):175-84. PubMed ID: 16274699 [TBL] [Abstract][Full Text] [Related]
19. New method to study DNA sequences: the languages of evolution. Spinelli G; Mayer-Foulkes D Nonlinear Dynamics Psychol Life Sci; 2008 Apr; 12(2):133-51. PubMed ID: 18384713 [TBL] [Abstract][Full Text] [Related]
20. Numerical characterization of DNA sequences based on the k-step Markov chain transition probability. Dai Q; Liu XQ; Wang TM J Comput Chem; 2006 Nov; 27(15):1830-42. PubMed ID: 16981233 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]