These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 15706523)

  • 21. Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome.
    Washietl S; Hofacker IL; Lukasser M; Hüttenhofer A; Stadler PF
    Nat Biotechnol; 2005 Nov; 23(11):1383-90. PubMed ID: 16273071
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection of inter-spread repeat sequence in genomic DNA sequence.
    Murakami H; Sugaya N; Sato M; Imaizumi A; Aburatani S; Horimoto K
    Genome Inform; 2004; 15(1):170-9. PubMed ID: 15712120
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RASE: recognition of alternatively spliced exons in C.elegans.
    Rätsch G; Sonnenburg S; Schölkopf B
    Bioinformatics; 2005 Jun; 21 Suppl 1():i369-77. PubMed ID: 15961480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of 954 bovine full-CDS cDNA sequences.
    Harhay GP; Sonstegard TS; Keele JW; Heaton MP; Clawson ML; Snelling WM; Wiedmann RT; Van Tassell CP; Smith TP
    BMC Genomics; 2005 Nov; 6():166. PubMed ID: 16305752
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Classification of highly unbalanced CYP450 data of drugs using cost sensitive machine learning techniques.
    Eitrich T; Kless A; Druska C; Meyer W; Grotendorst J
    J Chem Inf Model; 2007; 47(1):92-103. PubMed ID: 17238253
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A representation of DNA primary sequences by random walk.
    Bai FL; Liu YZ; Wang TM
    Math Biosci; 2007 Sep; 209(1):282-91. PubMed ID: 17306305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MUSA: a parameter free algorithm for the identification of biologically significant motifs.
    Mendes ND; Casimiro AC; Santos PM; Sá-Correia I; Oliveira AL; Freitas AT
    Bioinformatics; 2006 Dec; 22(24):2996-3002. PubMed ID: 17068086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bayesian inference of errors in ancient DNA caused by postmortem degradation.
    Mateiu LM; Rannala BH
    Mol Biol Evol; 2008 Jul; 25(7):1503-11. PubMed ID: 18420593
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fast model-based protein homology detection without alignment.
    Hochreiter S; Heusel M; Obermayer K
    Bioinformatics; 2007 Jul; 23(14):1728-36. PubMed ID: 17488755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational modeling of oligonucleotide positional densities for human promoter prediction.
    Narang V; Sung WK; Mittal A
    Artif Intell Med; 2005; 35(1-2):107-19. PubMed ID: 16076553
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A simplified approach to disulfide connectivity prediction from protein sequences.
    Vincent M; Passerini A; Labbé M; Frasconi P
    BMC Bioinformatics; 2008 Jan; 9():20. PubMed ID: 18194539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved translation efficiency of injected mRNA during early embryonic development.
    Fink M; Flekna G; Ludwig A; Heimbucher T; Czerny T
    Dev Dyn; 2006 Dec; 235(12):3370-8. PubMed ID: 17068769
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new hybrid fractal algorithm for predicting thermophilic nucleotide sequences.
    Lu JL; Hu XH; Hu DG
    J Theor Biol; 2012 Jan; 293():74-81. PubMed ID: 22001320
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Poly(A) code analyses reveal key determinants for tissue-specific mRNA alternative polyadenylation.
    Weng L; Li Y; Xie X; Shi Y
    RNA; 2016 Jun; 22(6):813-21. PubMed ID: 27095026
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Evaluation of genetic test redundancy using a high-frequency component of the l-gram graph].
    Kisliuk OS; Borovina TA; Nazipova NN
    Biofizika; 1999; 44(4):639-48. PubMed ID: 10544814
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Putative polyadenylation signals in nuclear genes of higher plants: a compilation and analysis.
    Joshi CP
    Nucleic Acids Res; 1987 Dec; 15(23):9627-40. PubMed ID: 3697078
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polyadenylation site prediction using PolyA-iEP method.
    Kavakiotis I; Tzanis G; Vlahavas I
    Methods Mol Biol; 2014; 1125():131-40. PubMed ID: 24590785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization and prediction of mRNA polyadenylation sites in human genes.
    Chang TH; Wu LC; Chen YT; Huang HD; Liu BJ; Cheng KF; Horng JT
    Med Biol Eng Comput; 2011 Apr; 49(4):463-72. PubMed ID: 21286831
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A hybrid model for the prediction of mRNA polyadenylation signals.
    Han J; Liu Z; Zhong D; Wang T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3511-4. PubMed ID: 24110486
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the reliable identification of plant sequences containing a polyadenylation site.
    Havukkala I; Vanderlooy S
    J Comput Biol; 2007 Nov; 14(9):1229-45. PubMed ID: 17990973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.