These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 15707367)
21. Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Rother M; Metcalf WW Proc Natl Acad Sci U S A; 2004 Nov; 101(48):16929-34. PubMed ID: 15550538 [TBL] [Abstract][Full Text] [Related]
23. A functional approach to uncover the low-temperature adaptation strategies of the archaeon Methanosarcina barkeri. Gunnigle E; McCay P; Fuszard M; Botting CH; Abram F; O'Flaherty V Appl Environ Microbiol; 2013 Jul; 79(14):4210-9. PubMed ID: 23645201 [TBL] [Abstract][Full Text] [Related]
24. Methanogenesis by Methanosarcina acetivorans involves two structurally and functionally distinct classes of heterodisulfide reductase. Buan NR; Metcalf WW Mol Microbiol; 2010 Feb; 75(4):843-53. PubMed ID: 19968794 [TBL] [Abstract][Full Text] [Related]
25. Genetic and proteomic analyses of CO utilization by Methanosarcina acetivorans. Rother M; Oelgeschläger E; Metcalf WM Arch Microbiol; 2007 Nov; 188(5):463-72. PubMed ID: 17554525 [TBL] [Abstract][Full Text] [Related]
26. Genome-wide gene expression and RNA half-life measurements allow predictions of regulation and metabolic behavior in Methanosarcina acetivorans. Peterson JR; Thor S; Kohler L; Kohler PR; Metcalf WW; Luthey-Schulten Z BMC Genomics; 2016 Nov; 17(1):924. PubMed ID: 27852217 [TBL] [Abstract][Full Text] [Related]
27. Genetic analysis of mch mutants in two Methanosarcina species demonstrates multiple roles for the methanopterin-dependent C-1 oxidation/reduction pathway and differences in H(2) metabolism between closely related species. Guss AM; Mukhopadhyay B; Zhang JK; Metcalf WW Mol Microbiol; 2005 Mar; 55(6):1671-80. PubMed ID: 15752192 [TBL] [Abstract][Full Text] [Related]
28. Structure and function of an unusual flavodoxin from the domain Prakash D; Iyer PR; Suharti S; Walters KA; Santiago-Martinez MG; Golbeck JH; Murakami KS; Ferry JG Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25917-25922. PubMed ID: 31801875 [TBL] [Abstract][Full Text] [Related]
29. Towards a computational model of a methane producing archaeum. Peterson JR; Labhsetwar P; Ellermeier JR; Kohler PR; Jain A; Ha T; Metcalf WW; Luthey-Schulten Z Archaea; 2014; 2014():898453. PubMed ID: 24729742 [TBL] [Abstract][Full Text] [Related]
30. Methanol-dependent gene expression demonstrates that methyl-coenzyme M reductase is essential in Methanosarcina acetivorans C2A and allows isolation of mutants with defects in regulation of the methanol utilization pathway. Rother M; Boccazzi P; Bose A; Pritchett MA; Metcalf WW J Bacteriol; 2005 Aug; 187(16):5552-9. PubMed ID: 16077099 [TBL] [Abstract][Full Text] [Related]
31. Methanogenesis marker protein 10 (Mmp10) from Radle MI; Miller DV; Laremore TN; Booker SJ J Biol Chem; 2019 Aug; 294(31):11712-11725. PubMed ID: 31113866 [TBL] [Abstract][Full Text] [Related]
32. Acetate, methanol and carbon dioxide as substrates for growth of Methanosarcina barkeri. Hutten TJ; Bongaerts HC; van der Drift C; Vogels GD Antonie Van Leeuwenhoek; 1980; 46(6):601-10. PubMed ID: 6786216 [TBL] [Abstract][Full Text] [Related]
33. Metabolic reconstruction of the archaeon methanogen Methanosarcina Acetivorans. Satish Kumar V; Ferry JG; Maranas CD BMC Syst Biol; 2011 Feb; 5():28. PubMed ID: 21324125 [TBL] [Abstract][Full Text] [Related]
34. Comparison of unitrophic and mixotrophic substrate metabolism by acetate-adapted strain of Methanosarcina barkeri. Krzycki JA; Wolkin RH; Zeikus JG J Bacteriol; 1982 Jan; 149(1):247-54. PubMed ID: 6798021 [TBL] [Abstract][Full Text] [Related]
35. Coexistence of group I and group II chaperonins in the archaeon Methanosarcina mazei. Klunker D; Haas B; Hirtreiter A; Figueiredo L; Naylor DJ; Pfeifer G; Müller V; Deppenmeier U; Gottschalk G; Hartl FU; Hayer-Hartl M J Biol Chem; 2003 Aug; 278(35):33256-67. PubMed ID: 12796498 [TBL] [Abstract][Full Text] [Related]
36. Methanogenesis in marine sediments. Ferry JG; Lessner DJ Ann N Y Acad Sci; 2008 Mar; 1125():147-57. PubMed ID: 18378593 [TBL] [Abstract][Full Text] [Related]
37. Isolation and Characterization of a Thermophilic Strain of Methanosarcina Unable to Use H(2)-CO(2) for Methanogenesis. Zinder SH; Mah RA Appl Environ Microbiol; 1979 Nov; 38(5):996-1008. PubMed ID: 16345468 [TBL] [Abstract][Full Text] [Related]
38. The nutritional status of Methanosarcina acetivorans regulates glycogen metabolism and gluconeogenesis and glycolysis fluxes. Santiago-Martínez MG; Encalada R; Lira-Silva E; Pineda E; Gallardo-Pérez JC; Reyes-García MA; Saavedra E; Moreno-Sánchez R; Marín-Hernández A; Jasso-Chávez R FEBS J; 2016 May; 283(10):1979-99. PubMed ID: 27000496 [TBL] [Abstract][Full Text] [Related]
39. Comparison of the proteome of Methylobacterium extorquens AM1 grown under methylotrophic and nonmethylotrophic conditions. Laukel M; Rossignol M; Borderies G; Völker U; Vorholt JA Proteomics; 2004 May; 4(5):1247-64. PubMed ID: 15188393 [TBL] [Abstract][Full Text] [Related]
40. Methanosarcina semesiae sp. nov., a dimethylsulfide-utilizing methanogen from mangrove sediment. Lyimo TJ; Pol A; Op den Camp HJ; Harhangi HR; Vogels GD Int J Syst Evol Microbiol; 2000 Jan; 50 Pt 1():171-178. PubMed ID: 10826801 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]