BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 15708002)

  • 1. Action of multiple base excision repair enzymes on the 2'-deoxyribonolactone.
    Faure V; Saparbaev M; Dumy P; Constant JF
    Biochem Biophys Res Commun; 2005 Mar; 328(4):1188-95. PubMed ID: 15708002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of base excision DNA repair of the oxidative lesion 2-deoxyribonolactone and the formation of DNA-protein cross-links.
    Sung JS; Demple B
    Methods Enzymol; 2006; 408():48-64. PubMed ID: 16793362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-linking of 2-deoxyribonolactone and its beta-elimination product by base excision repair enzymes.
    Kroeger KM; Hashimoto M; Kow YW; Greenberg MM
    Biochemistry; 2003 Mar; 42(8):2449-55. PubMed ID: 12600212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Major oxidative products of cytosine are substrates for the nucleotide incision repair pathway.
    Daviet S; Couvé-Privat S; Gros L; Shinozuka K; Ide H; Saparbaev M; Ishchenko AA
    DNA Repair (Amst); 2007 Jan; 6(1):8-18. PubMed ID: 16978929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Base excision repair by hNTH1 and hOGG1: a two edged sword in the processing of DNA damage in gamma-irradiated human cells.
    Yang N; Chaudhry MA; Wallace SS
    DNA Repair (Amst); 2006 Jan; 5(1):43-51. PubMed ID: 16111924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of base excision repair subpathways in correcting oxidized abasic sites in DNA.
    Sung JS; Demple B
    FEBS J; 2006 Apr; 273(8):1620-9. PubMed ID: 16623699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repair of oxidized abasic sites by exonuclease III, endonuclease IV, and endonuclease III.
    Greenberg MM; Weledji YN; Kim J; Bales BC
    Biochemistry; 2004 Jun; 43(25):8178-83. PubMed ID: 15209514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncoupling of the base excision and nucleotide incision repair pathways reveals their respective biological roles.
    Ishchenko AA; Deprez E; Maksimenko A; Brochon JC; Tauc P; Saparbaev MK
    Proc Natl Acad Sci U S A; 2006 Feb; 103(8):2564-9. PubMed ID: 16473948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different organization of base excision repair of uracil in DNA in nuclei and mitochondria and selective upregulation of mitochondrial uracil-DNA glycosylase after oxidative stress.
    Akbari M; Otterlei M; Peña-Diaz J; Krokan HE
    Neuroscience; 2007 Apr; 145(4):1201-12. PubMed ID: 17101234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular and biological roles of Ape1 protein in mammalian base excision repair.
    Demple B; Sung JS
    DNA Repair (Amst); 2005 Dec; 4(12):1442-9. PubMed ID: 16199212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The intricate structural chemistry of base excision repair machinery: implications for DNA damage recognition, removal, and repair.
    Hitomi K; Iwai S; Tainer JA
    DNA Repair (Amst); 2007 Apr; 6(4):410-28. PubMed ID: 17208522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human ribosomal protein S3 (hRpS3) interacts with uracil-DNA glycosylase (hUNG) and stimulates its glycosylase activity.
    Ko SI; Park JH; Park MJ; Kim J; Kang LW; Han YS
    Mutat Res; 2008 Dec; 648(1-2):54-64. PubMed ID: 18973764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Base-excision repair of oxidative DNA damage by DNA glycosylases.
    Dizdaroglu M
    Mutat Res; 2005 Dec; 591(1-2):45-59. PubMed ID: 16054172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embryonic extracts derived from the nematode Caenorhabditis elegans remove uracil from DNA by the sequential action of uracil-DNA glycosylase and AP (apurinic/apyrimidinic) endonuclease.
    Shatilla A; Ramotar D
    Biochem J; 2002 Jul; 365(Pt 2):547-53. PubMed ID: 11966472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow base excision by human alkyladenine DNA glycosylase limits the rate of formation of AP sites and AP endonuclease 1 does not stimulate base excision.
    Maher RL; Vallur AC; Feller JA; Bloom LB
    DNA Repair (Amst); 2007 Jan; 6(1):71-81. PubMed ID: 17018265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. XRCC1 interactions with multiple DNA glycosylases: a model for its recruitment to base excision repair.
    Campalans A; Marsin S; Nakabeppu Y; O'connor TR; Boiteux S; Radicella JP
    DNA Repair (Amst); 2005 Jul; 4(7):826-35. PubMed ID: 15927541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative nucleotide incision repair pathway for oxidative DNA damage.
    Ischenko AA; Saparbaev MK
    Nature; 2002 Jan; 415(6868):183-7. PubMed ID: 11805838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Base excision repair].
    Sliwiński T; Błasiak J
    Postepy Biochem; 2005; 51(2):120-9. PubMed ID: 16209349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of DNA glycosylase activity of OGG1 by NEIL1: functional collaboration between two human DNA glycosylases.
    Mokkapati SK; Wiederhold L; Hazra TK; Mitra S
    Biochemistry; 2004 Sep; 43(36):11596-604. PubMed ID: 15350146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human ribosomal protein S3 interacts with DNA base excision repair proteins hAPE/Ref-1 and hOGG1.
    Hegde V; Wang M; Deutsch WA
    Biochemistry; 2004 Nov; 43(44):14211-7. PubMed ID: 15518571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.