BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 15708573)

  • 1. LvGroucho and nuclear beta-catenin functionally compete for Tcf binding to influence activation of the endomesoderm gene regulatory network in the sea urchin embryo.
    Range RC; Venuti JM; McClay DR
    Dev Biol; 2005 Mar; 279(1):252-67. PubMed ID: 15708573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TCF is the nuclear effector of the beta-catenin signal that patterns the sea urchin animal-vegetal axis.
    Vonica A; Weng W; Gumbiner BM; Venuti JM
    Dev Biol; 2000 Jan; 217(2):230-43. PubMed ID: 10625549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential signaling crosstalk regulates endomesoderm segregation in sea urchin embryos.
    Sethi AJ; Wikramanayake RM; Angerer RC; Range RC; Angerer LM
    Science; 2012 Feb; 335(6068):590-3. PubMed ID: 22301319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wnt6 activates endoderm in the sea urchin gene regulatory network.
    Croce J; Range R; Wu SY; Miranda E; Lhomond G; Peng JC; Lepage T; McClay DR
    Development; 2011 Aug; 138(15):3297-306. PubMed ID: 21750039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of Tcf/Lef in establishing cell types along the animal-vegetal axis of sea urchins.
    Huang L; Li X; El-Hodiri HM; Dayal S; Wikramanayake AH; Klein WH
    Dev Genes Evol; 2000 Feb; 210(2):73-81. PubMed ID: 10664150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nemo-like kinase (NLK) acts downstream of Notch/Delta signalling to downregulate TCF during mesoderm induction in the sea urchin embryo.
    Röttinger E; Croce J; Lhomond G; Besnardeau L; Gache C; Lepage T
    Development; 2006 Nov; 133(21):4341-53. PubMed ID: 17038519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo.
    Davidson EH; Rast JP; Oliveri P; Ransick A; Calestani C; Yuh CH; Minokawa T; Amore G; Hinman V; Arenas-Mena C; Otim O; Brown CT; Livi CB; Lee PY; Revilla R; Schilstra MJ; Clarke PJ; Rust AG; Pan Z; Arnone MI; Rowen L; Cameron RA; McClay DR; Hood L; Bolouri H
    Dev Biol; 2002 Jun; 246(1):162-90. PubMed ID: 12027441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SpKrl: a direct target of beta-catenin regulation required for endoderm differentiation in sea urchin embryos.
    Howard EW; Newman LA; Oleksyn DW; Angerer RC; Angerer LM
    Development; 2001 Feb; 128(3):365-75. PubMed ID: 11152635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of pmar1 controls specification of micromeres in the sea urchin embryo.
    Oliveri P; Davidson EH; McClay DR
    Dev Biol; 2003 Jun; 258(1):32-43. PubMed ID: 12781680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A regulatory gene network that directs micromere specification in the sea urchin embryo.
    Oliveri P; Carrick DM; Davidson EH
    Dev Biol; 2002 Jun; 246(1):209-28. PubMed ID: 12027443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TCF: Lady Justice casting the final verdict on the outcome of Wnt signalling.
    Brantjes H; Barker N; van Es J; Clevers H
    Biol Chem; 2002 Feb; 383(2):255-61. PubMed ID: 11934263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cis-Regulatory inputs of the wnt8 gene in the sea urchin endomesoderm network.
    Minokawa T; Wikramanayake AH; Davidson EH
    Dev Biol; 2005 Dec; 288(2):545-58. PubMed ID: 16289024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SoxB1 downregulation in vegetal lineages of sea urchin embryos is achieved by both transcriptional repression and selective protein turnover.
    Angerer LM; Newman LA; Angerer RC
    Development; 2005 Mar; 132(5):999-1008. PubMed ID: 15689377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A framework for the establishment of a cnidarian gene regulatory network for "endomesoderm" specification: the inputs of ß-catenin/TCF signaling.
    Röttinger E; Dahlin P; Martindale MQ
    PLoS Genet; 2012; 8(12):e1003164. PubMed ID: 23300467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo.
    Logan CY; Miller JR; Ferkowicz MJ; McClay DR
    Development; 1999 Jan; 126(2):345-57. PubMed ID: 9847248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All Tcf HMG box transcription factors interact with Groucho-related co-repressors.
    Brantjes H; Roose J; van De Wetering M; Clevers H
    Nucleic Acids Res; 2001 Apr; 29(7):1410-9. PubMed ID: 11266540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus.
    Gross JM; McClay DR
    Dev Biol; 2001 Nov; 239(1):132-47. PubMed ID: 11784024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene regulatory network interactions in sea urchin endomesoderm induction.
    Sethi AJ; Angerer RC; Angerer LM
    PLoS Biol; 2009 Feb; 7(2):e1000029. PubMed ID: 19192949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HMG box transcription factor TCF-4's interaction with CtBP1 controls the expression of the Wnt target Axin2/Conductin in human embryonic kidney cells.
    Valenta T; Lukas J; Korinek V
    Nucleic Acids Res; 2003 May; 31(9):2369-80. PubMed ID: 12711682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.