These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15709656)

  • 1. Minimum-time thermal dose control of thermal therapies.
    Arora D; Skliar M; Roemer RB
    IEEE Trans Biomed Eng; 2005 Feb; 52(2):191-200. PubMed ID: 15709656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct thermal dose control of constrained focused ultrasound treatments: phantom and in vivo evaluation.
    Arora D; Cooley D; Perry T; Skliar M; Roemer RB
    Phys Med Biol; 2005 Apr; 50(8):1919-35. PubMed ID: 15815104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-predictive control of hyperthermia treatments.
    Arora D; Skliar M; Roemer RB
    IEEE Trans Biomed Eng; 2002 Jul; 49(7):629-39. PubMed ID: 12083297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal dose optimization method for ultrasound surgery.
    Malinen M; Huttunen T; Kaipio JP
    Phys Med Biol; 2003 Mar; 48(6):745-62. PubMed ID: 12699192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of thermal therapies with moving power deposition field.
    Arora D; Minor MA; Skliar M; Roemer RB
    Phys Med Biol; 2006 Mar; 51(5):1201-19. PubMed ID: 16481688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimisation-based thermal treatment planning for catheter-based ultrasound hyperthermia.
    Chen X; Diederich CJ; Wootton JH; Pouliot J; Hsu IC
    Int J Hyperthermia; 2010 Feb; 26(1):39-55. PubMed ID: 20100052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully tuned RBF neural network controller for ultrasound hyperthermia cancer tumour therapy.
    Karar ME; El-Brawany MA
    Network; 2018; 29(1-4):20-36. PubMed ID: 30404543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling focused ultrasound exposure for the optimal control of thermal dose distribution.
    Sassaroli E; Li KC; O'Neill BE
    ScientificWorldJournal; 2012; 2012():252741. PubMed ID: 22593669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The performance of a reduced-order adaptive controller when used in multi-antenna hyperthermia treatments with nonlinear temperature-dependent perfusion.
    Cheng KS; Yuan Y; Li Z; Stauffer PR; Maccarini P; Joines WT; Dewhirst MW; Das SK
    Phys Med Biol; 2009 Apr; 54(7):1979-95. PubMed ID: 19265209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the directional blood flow on thermal dose distribution during thermal therapy: an application of a Green's function based on the porous model.
    Kou HS; Shih TC; Lin WL
    Phys Med Biol; 2003 Jun; 48(11):1577-89. PubMed ID: 12817939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model predictive control (MPC) applied to a simplified model, magnetic nanoparticle hyperthermia (MNPH) treatment process.
    Abu-Ayyad M; Lad YS; Aguilar D; Karami K; Attaluri A
    Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38692266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood perfusion and thermal conduction effects in Gaussian beam, minimum time single-pulse thermal therapies.
    Cheng KS; Roemer RB
    Med Phys; 2005 Feb; 32(2):311-7. PubMed ID: 15789574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental validation of an inverse heat transfer algorithm for optimizing hyperthermia treatments.
    Gayzik FS; Scott EP; Loulou T
    J Biomech Eng; 2006 Aug; 128(4):505-15. PubMed ID: 16813442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of a cylindrical ultrasound phased-array with multiple-focus scanning for breast tumor thermal therapy.
    Ho CS; Ju KC; Chen YY; Lin WL
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6376-9. PubMed ID: 17945963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting effects of blood flow rate and size of vessels in a vasculature on hyperthermia treatments using computer simulation.
    Huang HW; Shih TC; Liauh CT
    Biomed Eng Online; 2010 Mar; 9():18. PubMed ID: 20346157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pilot point temperature regulation for thermal lesion control during ultrasound thermal therapy.
    Liu HL; Chen YY; Yen JY; Lin WL
    Med Biol Eng Comput; 2004 Mar; 42(2):178-88. PubMed ID: 15125147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research on thermal dose for high intensity focused ultrasound treatment based on the temperature-map of magnetic resonance imaging].
    Liu L; Li F; Gong X; Liu Y; Hu X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Apr; 27(2):253-6. PubMed ID: 20481296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endocavitary thermal therapy by MRI-guided phased-array contact ultrasound: experimental and numerical studies on the multi-input single-output PID temperature controller's convergence and stability.
    Salomir R; Rata M; Cadis D; Petrusca L; Auboiroux V; Cotton F
    Med Phys; 2009 Oct; 36(10):4726-41. PubMed ID: 19928104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulations of adaptive temperature control with self-focused hyperthermia system for tumor treatment.
    Hu J; Ding Y; Qian S; Tang X
    Ultrasonics; 2013 Jan; 53(1):171-7. PubMed ID: 22901395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation study for thermal dose optimization in ultrasound surgery of the breast.
    Malinen M; Huttunen T; Hynynen K; Kaipio JP
    Med Phys; 2004 May; 31(5):1296-307. PubMed ID: 15191322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.