These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 15709669)

  • 1. On cuff imbalance and tripolar ENG amplifier configurations.
    Triantis IF; Demosthenous A; Donaldson N
    IEEE Trans Biomed Eng; 2005 Feb; 52(2):314-20. PubMed ID: 15709669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tripolar-cuff deviation from ideal model: assessment by bioelectric field simulations and saline-bath experiments.
    Triantis IF; Demosthenous A
    Med Eng Phys; 2008 Jun; 30(5):550-62. PubMed ID: 17689281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artefact reduction with alternative cuff configurations.
    Andreasen LN; Struijk JJ
    IEEE Trans Biomed Eng; 2003 Oct; 50(10):1160-6. PubMed ID: 14560769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive neutralization of myoelectric interference from neural recording tripoles.
    Pachnis I; Demosthenous A; Donaldson N
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1067-74. PubMed ID: 17554825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of interference source proximity on cuff imbalance.
    Triantis IF; Demosthenous A
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):354-7. PubMed ID: 16485768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of signal-to-interference ratio and signal-to-noise ratio in nerve cuff electrode systems.
    Chu JU; Song KI; Han S; Lee SH; Kim J; Kang JY; Hwang D; Suh JK; Choi K; Youn I
    Physiol Meas; 2012 Jun; 33(6):943-67. PubMed ID: 22551721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated CMOS amplifier for ENG signal recording.
    Uranga A; Navarro X; Barniol N
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2188-94. PubMed ID: 15605867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal strength versus cuff length in nerve cuff electrode recordings.
    Andreasen LN; Struijk JJ
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):1045-50. PubMed ID: 12214877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Very low-noise ENG amplifier system using CMOS technology.
    Rieger R; Schuettler M; Pal D; Clarke C; Langlois P; Taylor J; Donaldson N
    IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):427-37. PubMed ID: 17190035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental determination of compound action potential direction and propagation velocity from multi-electrode nerve cuffs.
    Rieger R; Taylor J; Comi E; Donaldson N; Russold M; Mahony CM; McLaughlin JA; McAdams E; Demosthenous A; Jarvis JC
    Med Eng Phys; 2004 Jul; 26(6):531-4. PubMed ID: 15234689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A low-noise preamplifier for nerve cuff electrodes.
    Sahin M
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):561-5. PubMed ID: 16425839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental validation of the nerve conduction velocity selective recording technique using a multi-contact cuff electrode.
    Yoshida K; Kurstjens GA; Hennings K
    Med Eng Phys; 2009 Dec; 31(10):1261-70. PubMed ID: 19762269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Instrumentation for ENG and EMG recordings in FES systems.
    Nikolić ZM; Popović DB; Stein RB; Kenwell Z
    IEEE Trans Biomed Eng; 1994 Jul; 41(7):703-6. PubMed ID: 7927392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a simple low noise amplifier for recording of sensory mass signals from peripheral nerves.
    Stieglitz T; Klausmann D; Krueger TB
    Biomed Tech (Berl); 2009 Feb; 54(1):1-7. PubMed ID: 19182867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays.
    Olsson RH; Buhl DL; Sirota AM; Buzsaki G; Wise KD
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1303-11. PubMed ID: 16041994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transverse versus longitudinal tripolar configuration for selective stimulation with multipolar cuff electrodes.
    Nielsen TN; Kurstjens GA; Struijk JJ
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):913-9. PubMed ID: 21421427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-low noise miniaturized neural amplifier with hardware averaging.
    Dweiri YM; Eggers T; McCallum G; Durand DM
    J Neural Eng; 2015 Aug; 12(4):046024. PubMed ID: 26083774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Mono-, Bi-, and Tripolar Configurations for Stimulation and Recording With an Interfascicular Interface.
    Nielsen TN; Sevcencu C; Struijk JJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):88-95. PubMed ID: 23981544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of consecutive slips in nerve signals recorded by implanted cuff electrode.
    Tong KY; Rong W; Li L; Cao J
    Med Eng Phys; 2008 May; 30(4):460-5. PubMed ID: 17600750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple-electrode nerve cuffs for low-velocity and velocity-selective neural recording.
    Taylor J; Donaldson N; Winter J
    Med Biol Eng Comput; 2004 Sep; 42(5):634-43. PubMed ID: 15503964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.