These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 15709702)

  • 21. Signalling molecule transport analysis in lacunar-canalicular system.
    Kumar R; Tiwari AK; Tripathi D; Sharma NN
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1879-1896. PubMed ID: 32112154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimates of the peak pressures in bone pore water.
    Zhang D; Weinbaum S; Cowin SC
    J Biomech Eng; 1998 Dec; 120(6):697-703. PubMed ID: 10412451
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of interstitial bone microcracks on strain-induced fluid flow.
    Nguyen VH; Lemaire T; Naili S
    Biomech Model Mechanobiol; 2011 Dec; 10(6):963-72. PubMed ID: 21253808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Chemo-poroelastic Analysis of Mechanically Induced Fluid and Solute Transport in an Osteonal Cortical Bone.
    Jin ZH; Janes JG; Peterson ML
    Ann Biomed Eng; 2021 Jan; 49(1):299-309. PubMed ID: 32514933
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling fluorescence recovery after photobleaching in loaded bone: potential applications in measuring fluid and solute transport in the osteocytic lacunar-canalicular system.
    Zhou X; Novotny JE; Wang L
    Ann Biomed Eng; 2008 Dec; 36(12):1961-77. PubMed ID: 18810639
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A multiscale 3D finite element analysis of fluid/solute transport in mechanically loaded bone.
    Fan L; Pei S; Lucas Lu X; Wang L
    Bone Res; 2016; 4():16032. PubMed ID: 27722020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synchrotron X-ray phase nano-tomography-based analysis of the lacunar-canalicular network morphology and its relation to the strains experienced by osteocytes in situ as predicted by case-specific finite element analysis.
    Varga P; Hesse B; Langer M; Schrof S; Männicke N; Suhonen H; Pacureanu A; Pahr D; Peyrin F; Raum K
    Biomech Model Mechanobiol; 2015 Apr; 14(2):267-82. PubMed ID: 25011566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental determination of the permeability in the lacunar-canalicular porosity of bone.
    Gailani G; Benalla M; Mahamud R; Cowin SC; Cardoso L
    J Biomech Eng; 2009 Oct; 131(10):101007. PubMed ID: 19831477
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Derivation, validation, and prediction of loading-induced mineral apposition rates at endocortical and periosteal bone surfaces based on fluid velocity and pore pressure.
    Singh S; Singh SJ; Prasad J
    Bone Rep; 2023 Dec; 19():101729. PubMed ID: 38089647
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strain-derived canalicular fluid flow regulates osteoclast activity in a remodelling osteon--a proposal.
    Burger EH; Klein-Nulend J; Smit TH
    J Biomech; 2003 Oct; 36(10):1453-9. PubMed ID: 14499294
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Poroelastic evaluation of fluid movement through the lacunocanalicular system.
    Goulet GC; Coombe D; Martinuzzi RJ; Zernicke RF
    Ann Biomed Eng; 2009 Jul; 37(7):1390-402. PubMed ID: 19415492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluid pressure relaxation depends upon osteonal microstructure: modeling an oscillatory bending experiment.
    Wang L; Fritton SP; Cowin SC; Weinbaum S
    J Biomech; 1999 Jul; 32(7):663-72. PubMed ID: 10400353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A finite element dual porosity approach to model deformation-induced fluid flow in cortical bone.
    Fornells P; García-Aznar JM; Doblaré M
    Ann Biomed Eng; 2007 Oct; 35(10):1687-98. PubMed ID: 17616819
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Behavior of fluid in stressed bone and cellular stimulation.
    Johnson MW
    Calcif Tissue Int; 1984; 36 Suppl 1():S72-6. PubMed ID: 6430527
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ permeability measurement of the mammalian lacunar-canalicular system.
    Gardinier JD; Townend CW; Jen KP; Wu Q; Duncan RL; Wang L
    Bone; 2010 Apr; 46(4):1075-81. PubMed ID: 20080221
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Poroelastic analysis of interstitial fluid flow in a single lamellar trabecula subjected to cyclic loading.
    Kameo Y; Ootao Y; Ishihara M
    Biomech Model Mechanobiol; 2016 Apr; 15(2):361-70. PubMed ID: 26081726
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The pathway of bone fluid flow as defined by in vivo intramedullary pressure and streaming potential measurements.
    Qin YX; Lin W; Rubin C
    Ann Biomed Eng; 2002 May; 30(5):693-702. PubMed ID: 12108843
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of Osteocyte Shape on Fluid Flow and Fluid Shear Stress of the Loaded Bone.
    Yang F; Yu W; Huo X; Li H; Qi Q; Yang X; Shi N; Wu X; Chen W
    Biomed Res Int; 2022; 2022():3935803. PubMed ID: 35677099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Canalicular fluid flow induced by loading waveforms: A comparative analysis.
    Kumar R; Tiwari AK; Tripathi D; Shrivas NV; Nizam F
    J Theor Biol; 2019 Jun; 471():59-73. PubMed ID: 30930062
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study.
    Rémond A; Naïli S; Lemaire T
    Biomech Model Mechanobiol; 2008 Dec; 7(6):487-95. PubMed ID: 17990014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.