These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15709703)

  • 1. Hydraulic strengthening affects the stiffness and strength of cortical bone.
    Liebschner MA; Keller TS
    Ann Biomed Eng; 2005 Jan; 33(1):26-38. PubMed ID: 15709703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.
    Asgharpour Z; Zioupos P; Graw M; Peldschus S
    Forensic Sci Int; 2014 Mar; 236():109-16. PubMed ID: 24529781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue.
    Bayraktar HH; Morgan EF; Niebur GL; Morris GE; Wong EK; Keaveny TM
    J Biomech; 2004 Jan; 37(1):27-35. PubMed ID: 14672565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of proximal femoral stiffness and areal bone mineral density to changes in bone geometry and density.
    Pisharody S; Phillips R; Langton CM
    Proc Inst Mech Eng H; 2008 Apr; 222(3):367-75. PubMed ID: 18491705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of fluid in bone extravascular matrix to strain-rate dependent stiffening of bone tissue - A poroelastic study.
    Le Pense S; Chen Y
    J Mech Behav Biomed Mater; 2017 Jan; 65():90-101. PubMed ID: 27569757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanical characteristics of cancellous bone at the upper femoral region.
    Martens M; Van Audekercke R; Delport P; De Meester P; Mulier JC
    J Biomech; 1983; 16(12):971-83. PubMed ID: 6671988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of boundary conditions, impact loading and hydraulic stiffening on femoral fracture strength.
    Haider IT; Speirs AD; Frei H
    J Biomech; 2013 Sep; 46(13):2115-21. PubMed ID: 23906770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain distribution in the proximal human femoral metaphysis.
    Cristofolini L; Juszczyk M; Taddei F; Viceconti M
    Proc Inst Mech Eng H; 2009 Apr; 223(3):273-88. PubMed ID: 19405434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study.
    Rémond A; Naïli S; Lemaire T
    Biomech Model Mechanobiol; 2008 Dec; 7(6):487-95. PubMed ID: 17990014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femoral head apparent density distribution predicted from bone stresses.
    Fyhrie DP; Carter DR
    J Biomech; 1990; 23(1):1-10. PubMed ID: 2307686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling deformation-induced fluid flow in cortical bone's canalicular-lacunar system.
    Gururaja S; Kim HJ; Swan CC; Brand RA; Lakes RS
    Ann Biomed Eng; 2005 Jan; 33(1):7-25. PubMed ID: 15709702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A determination of the minimum sizes of representative volume elements for the prediction of cortical bone elastic properties.
    Grimal Q; Raum K; Gerisch A; Laugier P
    Biomech Model Mechanobiol; 2011 Dec; 10(6):925-37. PubMed ID: 21267625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical instabilities in bone remodeling simulations: the advantages of a node-based finite element approach.
    Jacobs CR; Levenston ME; Beaupré GS; Simo JC; Carter DR
    J Biomech; 1995 Apr; 28(4):449-59. PubMed ID: 7738054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of fabric in the large strain compressive behavior of human trabecular bone.
    Charlebois M; Pretterklieber M; Zysset PK
    J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of cement compressive strength and porosity on augmentation performance in a model of orthopedic screw pull-out.
    Pujari-Palmer M; Robo C; Persson C; Procter P; Engqvist H
    J Mech Behav Biomed Mater; 2018 Jan; 77():624-633. PubMed ID: 29100205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The modified super-ellipsoid yield criterion for human trabecular bone.
    Bayraktar HH; Gupta A; Kwon RY; Papadopoulos P; Keaveny TM
    J Biomech Eng; 2004 Dec; 126(6):677-84. PubMed ID: 15796326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The sensitivity of nonlinear computational models of trabecular bone to tissue level constitutive model.
    Baumann AP; Shi X; Roeder RK; Niebur GL
    Comput Methods Biomech Biomed Engin; 2016; 19(5):465-73. PubMed ID: 25959510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracortical stiffness of mid-diaphysis femur bovine bone: lacunar-canalicular based homogenization numerical solutions and microhardness measurements.
    Hage IS; Hamade RF
    J Mater Sci Mater Med; 2017 Sep; 28(9):135. PubMed ID: 28762142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of micro-level and continuum-level voxel models of the proximal femur.
    Verhulp E; van Rietbergen B; Huiskes R
    J Biomech; 2006; 39(16):2951-7. PubMed ID: 16359680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.