These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 15709705)

  • 1. Nano-microscale models of periosteocytic flow show differences in stresses imparted to cell body and processes.
    Anderson EJ; Kaliyamoorthy S; Iwan J; Alexander D; Knothe Tate ML
    Ann Biomed Eng; 2005 Jan; 33(1):52-62. PubMed ID: 15709705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses.
    Weinbaum S; Cowin SC; Zeng Y
    J Biomech; 1994 Mar; 27(3):339-60. PubMed ID: 8051194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscale fluid flow analysis in a human osteocyte canaliculus using a realistic high-resolution image-based three-dimensional model.
    Kamioka H; Kameo Y; Imai Y; Bakker AD; Bacabac RG; Yamada N; Takaoka A; Yamashiro T; Adachi T; Klein-Nulend J
    Integr Biol (Camb); 2012 Oct; 4(10):1198-206. PubMed ID: 22858651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Idealization of pericellular fluid space geometry and dimension results in a profound underprediction of nano-microscale stresses imparted by fluid drag on osteocytes.
    Anderson EJ; Knothe Tate ML
    J Biomech; 2008; 41(8):1736-46. PubMed ID: 18482728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fiber matrix model for fluid flow and streaming potentials in the canaliculi of an osteon.
    Zeng Y; Cowin SC; Weinbaum S
    Ann Biomed Eng; 1994; 22(3):280-92. PubMed ID: 7978549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A theoretical model for stress-generated fluid flow in the canaliculi-lacunae network in bone tissue.
    Kufahl RH; Saha S
    J Biomech; 1990; 23(2):171-80. PubMed ID: 2312521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using a CFD model to understand the fluid dynamics promoting E. coli breakage in a high-pressure homogenizer.
    Miller J; Rogowski M; Kelly W
    Biotechnol Prog; 2002; 18(5):1060-7. PubMed ID: 12363358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematically modeling fluid flow and fluid shear stress in the canaliculi of a loaded osteon.
    Wu X; Wang N; Wang Z; Yu W; Wang Y; Guo Y; Chen W
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):149. PubMed ID: 28155688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling deformation-induced fluid flow in cortical bone's canalicular-lacunar system.
    Gururaja S; Kim HJ; Swan CC; Brand RA; Lakes RS
    Ann Biomed Eng; 2005 Jan; 33(1):7-25. PubMed ID: 15709702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do calcium fluxes within cortical bone affect osteocyte mechanosensitivity?
    Kaiser J; Lemaire T; Naili S; Sansalone V; Komarova SV
    J Theor Biol; 2012 Jun; 303():75-86. PubMed ID: 22420945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Would increased interstitial fluid flow through in situ mechanical stimulation enhance bone remodeling?
    Letechipia JE; Alessi A; Rodriguez G; Asbun J
    Med Hypotheses; 2010 Aug; 75(2):196-8. PubMed ID: 20227836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluid flow in the osteocyte mechanical environment: a fluid-structure interaction approach.
    Verbruggen SW; Vaughan TJ; McNamara LM
    Biomech Model Mechanobiol; 2014 Jan; 13(1):85-97. PubMed ID: 23567965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructure of the osteocyte process and its pericellular matrix.
    You LD; Weinbaum S; Cowin SC; Schaffler MB
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Jun; 278(2):505-13. PubMed ID: 15164337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Permeability and fluid flow-induced wall shear stress of bone tissue scaffolds: Computational fluid dynamic analysis using Newtonian and non-Newtonian blood flow models.
    Ali D; Sen S
    Comput Biol Med; 2018 Aug; 99():201-208. PubMed ID: 29957377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The imperative for controlled mechanical stresses in unraveling cellular mechanisms of mechanotransduction.
    Anderson EJ; Falls TD; Sorkin AM; Knothe Tate ML
    Biomed Eng Online; 2006 May; 5():27. PubMed ID: 16672051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of functional gap junctions and regulation by fluid flow in osteocyte-like MLO-Y4 cells.
    Cheng B; Zhao S; Luo J; Sprague E; Bonewald LF; Jiang JX
    J Bone Miner Res; 2001 Feb; 16(2):249-59. PubMed ID: 11204425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution image-based simulation reveals membrane strain concentration on osteocyte processes caused by tethering elements.
    Yokoyama Y; Kameo Y; Kamioka H; Adachi T
    Biomech Model Mechanobiol; 2021 Dec; 20(6):2353-2360. PubMed ID: 34471950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of shear stresses in collagen-glycosaminoglycan and calcium phosphate scaffolds in bone tissue-engineering bioreactors.
    Jungreuthmayer C; Donahue SW; Jaasma MJ; Al-Munajjed AA; Zanghellini J; Kelly DJ; O'Brien FJ
    Tissue Eng Part A; 2009 May; 15(5):1141-9. PubMed ID: 18831686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micromechanically based poroelastic modeling of fluid flow in Haversian bone.
    Swan CC; Lakes RS; Brand RA; Stewart KJ
    J Biomech Eng; 2003 Feb; 125(1):25-37. PubMed ID: 12661194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A finite element dual porosity approach to model deformation-induced fluid flow in cortical bone.
    Fornells P; García-Aznar JM; Doblaré M
    Ann Biomed Eng; 2007 Oct; 35(10):1687-98. PubMed ID: 17616819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.