BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 15709778)

  • 1. Quench-flow analysis reveals multiple phases of GluT1-mediated sugar transport.
    Blodgett DM; Carruthers A
    Biochemistry; 2005 Feb; 44(7):2650-60. PubMed ID: 15709778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stop-flow analysis of cooperative interactions between GLUT1 sugar import and export sites.
    Sultzman LA; Carruthers A
    Biochemistry; 1999 May; 38(20):6640-50. PubMed ID: 10350483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of the human erythrocyte glucose transport protein are determined by cellular context.
    Levine KB; Robichaud TK; Hamill S; Sultzman LA; Carruthers A
    Biochemistry; 2005 Apr; 44(15):5606-16. PubMed ID: 15823019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The human erythrocyte sugar transporter presents two sugar import sites.
    Hamill S; Cloherty EK; Carruthers A
    Biochemistry; 1999 Dec; 38(51):16974-83. PubMed ID: 10606533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of GLUT1-mediated sugar transport by an antiport/uniport switch mechanism.
    Cloherty EK; Diamond DL; Heard KS; Carruthers A
    Biochemistry; 1996 Oct; 35(40):13231-9. PubMed ID: 8855962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP-dependent substrate occlusion by the human erythrocyte sugar transporter.
    Heard KS; Fidyk N; Carruthers A
    Biochemistry; 2000 Mar; 39(11):3005-14. PubMed ID: 10715121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites.
    Cloherty EK; Levine KB; Carruthers A
    Biochemistry; 2001 Dec; 40(51):15549-61. PubMed ID: 11747430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid substrate translocation by the multisubunit, erythroid glucose transporter requires subunit associations but not cooperative ligand binding.
    Coderre PE; Cloherty EK; Zottola RJ; Carruthers A
    Biochemistry; 1995 Aug; 34(30):9762-73. PubMed ID: 7626647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conventional transport assays underestimate sugar transport rates in human red cells.
    Blodgett DM; Carruthers A
    Blood Cells Mol Dis; 2004; 32(3):401-7. PubMed ID: 15121099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of Glut1 glucose transporter in human erythrocytes.
    Zhang JZ; Ismail-Beigi F
    Arch Biochem Biophys; 1998 Aug; 356(1):86-92. PubMed ID: 9681995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilized membrane vesicle or proteoliposome affinity chromatography. Frontal analysis of interactions of cytochalasin B and D-glucose with the human red cell glucose transporter.
    Brekkan E; Lundqvist A; Lundahl P
    Biochemistry; 1996 Sep; 35(37):12141-5. PubMed ID: 8810921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochalasin B does not serve as a marker of glucose transport in rabbit erythrocytes.
    Albert SG
    Biochem Int; 1984 Jul; 9(1):93-103. PubMed ID: 6541046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and physiologic determinants of human erythrocyte sugar transport regulation by adenosine triphosphate.
    Levine KB; Cloherty EK; Fidyk NJ; Carruthers A
    Biochemistry; 1998 Sep; 37(35):12221-32. PubMed ID: 9724536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitions of sugar transport produced by ligands binding at opposite sides of the membrane. Evidence for simultaneous occupation of the carrier by maltose and cytochalasin B.
    Carruthers A; Helgerson AL
    Biochemistry; 1991 Apr; 30(16):3907-15. PubMed ID: 2018762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative nucleotide binding to the human erythrocyte sugar transporter.
    Cloherty EK; Levine KB; Graybill C; Carruthers A
    Biochemistry; 2002 Oct; 41(42):12639-51. PubMed ID: 12379106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Net sugar transport is a multistep process. Evidence for cytosolic sugar binding sites in erythrocytes.
    Cloherty EK; Sultzman LA; Zottola RJ; Carruthers A
    Biochemistry; 1995 Nov; 34(47):15395-406. PubMed ID: 7492539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane-bound glyceraldehyde-3-phosphate dehydrogenase and multiphasic erythrocyte sugar transport.
    Heard KS; Diguette M; Heard AC; Carruthers A
    Exp Physiol; 1998 Mar; 83(2):195-202. PubMed ID: 9568479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of hexose transport by adenosine derivatives in human erythrocytes.
    May JM
    J Cell Physiol; 1988 May; 135(2):332-8. PubMed ID: 3372599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The glucose transporter in the plasma membrane of the outer segments of bovine retinal rods.
    Li XB; Szerencsei RT; Schnetkamp PP
    Exp Eye Res; 1994 Sep; 59(3):351-8. PubMed ID: 7821380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.