BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

974 related articles for article (PubMed ID: 15709783)

  • 1. Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide.
    Gonçalves E; Kitas E; Seelig J
    Biochemistry; 2005 Feb; 44(7):2692-702. PubMed ID: 15709783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and thermodynamic aspects of the interaction between heparan sulfate and analogues of melittin.
    Gonçalves E; Kitas E; Seelig J
    Biochemistry; 2006 Mar; 45(9):3086-94. PubMed ID: 16503664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magainin 2 amide interaction with lipid membranes: calorimetric detection of peptide binding and pore formation.
    Wenk MR; Seelig J
    Biochemistry; 1998 Mar; 37(11):3909-16. PubMed ID: 9521712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of alpha-and beta-oligoarginine-acids and amides with anionic lipid vesicles: a mechanistic and thermodynamic study.
    Hitz T; Iten R; Gardiner J; Namoto K; Walde P; Seebach D
    Biochemistry; 2006 May; 45(18):5817-29. PubMed ID: 16669625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure.
    Wieprecht T; Beyermann M; Seelig J
    Biochemistry; 1999 Aug; 38(32):10377-87. PubMed ID: 10441132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX; Damodaran K; Blazyk J; Lorigan GA
    Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes.
    Arouri A; Dathe M; Blume A
    Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enthalpy-driven apolipoprotein A-I and lipid bilayer interaction indicating protein penetration upon lipid binding.
    Arnulphi C; Jin L; Tricerri MA; Jonas A
    Biochemistry; 2004 Sep; 43(38):12258-64. PubMed ID: 15379564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isothermal titration calorimetric study of calcium association to lipid bilayers: influence of the vesicle preparation and composition.
    Arseneault M; Lafleur M
    Chem Phys Lipids; 2006 Jul; 142(1-2):84-93. PubMed ID: 16620798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melittin interaction with sulfated cell surface sugars.
    Klocek G; Seelig J
    Biochemistry; 2008 Mar; 47(9):2841-9. PubMed ID: 18220363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer.
    Wenk MR; Alt T; Seelig A; Seelig J
    Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiotoxin II segregates phosphatidylglycerol from mixtures with phosphatidylcholine: (31)P and (2)H NMR spectroscopic evidence.
    Carbone MA; Macdonald PM
    Biochemistry; 1996 Mar; 35(11):3368-78. PubMed ID: 8639486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of poly(L-arginine) with negatively charged DPPG membranes: calorimetric and monolayer studies.
    Schwieger C; Blume A
    Biomacromolecules; 2009 Aug; 10(8):2152-61. PubMed ID: 19603784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isothermal titration calorimetry studies of the binding of a rationally designed analogue of the antimicrobial peptide gramicidin s to phospholipid bilayer membranes.
    Abraham T; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2005 Feb; 44(6):2103-12. PubMed ID: 15697236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.
    Klocek G; Schulthess T; Shai Y; Seelig J
    Biochemistry; 2009 Mar; 48(12):2586-96. PubMed ID: 19173655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PMP1 18-38, a yeast plasma membrane protein fragment, binds phosphatidylserine from bilayer mixtures with phosphatidylcholine: a (2)H-NMR study.
    Roux M; Beswick V; Coïc YM; Huynh-Dinh T; Sanson A; Neumann JM
    Biophys J; 2000 Nov; 79(5):2624-31. PubMed ID: 11053135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the interaction of ionic detergents with lipid membranes. Thermodynamic comparison of n-alkyl-+N(CH₃)₃ and n-alkyl-SO₄⁻.
    Beck A; Li-Blatter X; Seelig A; Seelig J
    J Phys Chem B; 2010 Dec; 114(48):15862-71. PubMed ID: 21067191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of octyl-beta-thioglucopyranoside with lipid membranes.
    Wenk MR; Seelig J
    Biophys J; 1997 Nov; 73(5):2565-74. PubMed ID: 9370450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calorimetric measurement of phospholipid interaction with methyl-beta-cyclodextrin.
    Anderson TG; Tan A; Ganz P; Seelig J
    Biochemistry; 2004 Mar; 43(8):2251-61. PubMed ID: 14979721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.