BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 15709952)

  • 21. Mechanism of the Frank-Starling law--a simulation study with a novel cardiac muscle contraction model that includes titin and troponin I.
    Schneider NS; Shimayoshi T; Amano A; Matsuda T
    J Mol Cell Cardiol; 2006 Sep; 41(3):522-36. PubMed ID: 16860336
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cardiac function and modulation of sarcomeric function by length.
    Hanft LM; Korte FS; McDonald KS
    Cardiovasc Res; 2008 Mar; 77(4):627-36. PubMed ID: 18079105
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of myocyte strain on cardiac myofilament activation.
    Campbell KS
    Pflugers Arch; 2011 Jul; 462(1):3-14. PubMed ID: 21409385
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single particle analysis of relaxed and activated muscle thin filaments.
    Pirani A; Xu C; Hatch V; Craig R; Tobacman LS; Lehman W
    J Mol Biol; 2005 Feb; 346(3):761-72. PubMed ID: 15713461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cross-talk between L-type Ca2+ channels and mitochondria.
    Viola HM; Hool LC
    Clin Exp Pharmacol Physiol; 2010 Feb; 37(2):229-35. PubMed ID: 19671062
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Length-dependence of cross-bridge mediated activation of the cardiac thin filament.
    Smith SH; Fuchs F
    J Mol Cell Cardiol; 2000 May; 32(5):831-8. PubMed ID: 10775487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of Ca(2+)-signaling in cardiac myofilaments.
    Solaro RJ
    Med Sci Sports Exerc; 1991 Oct; 23(10):1145-8. PubMed ID: 1758291
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heart failure and Starling's Law of the heart.
    ter Keurs HE
    Can J Cardiol; 1996 Oct; 12(10):1047-57. PubMed ID: 9191498
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitric oxide regulation of myocardial contractility and calcium cycling: independent impact of neuronal and endothelial nitric oxide synthases.
    Khan SA; Skaf MW; Harrison RW; Lee K; Minhas KM; Kumar A; Fradley M; Shoukas AA; Berkowitz DE; Hare JM
    Circ Res; 2003 Jun; 92(12):1322-9. PubMed ID: 12764022
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sarcomere mechanics in uniform and non-uniform cardiac muscle: a link between pump function and arrhythmias.
    ter Keurs HE; Shinozaki T; Zhang YM; Zhang ML; Wakayama Y; Sugai Y; Kagaya Y; Miura M; Boyden PA; Stuyvers BD; Landesberg A
    Prog Biophys Mol Biol; 2008; 97(2-3):312-31. PubMed ID: 18394686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cardiac systems biology and parameter sensitivity analysis: intracellular Ca2+ regulatory mechanisms in mouse ventricular myocytes.
    Shin SY; Choo SM; Woo SH; Cho KH
    Adv Biochem Eng Biotechnol; 2008; 110():25-45. PubMed ID: 18437298
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetics of cardiac sarcomeric processes and rate-limiting steps in contraction and relaxation.
    Stehle R; Iorga B
    J Mol Cell Cardiol; 2010 May; 48(5):843-50. PubMed ID: 20060002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proposed mechanism for the length dependence of the force developed in maximally activated muscles.
    Marcucci L; Washio T; Yanagida T
    Sci Rep; 2019 Feb; 9(1):1317. PubMed ID: 30718530
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study of the interaction between rabbit cardiac contractile and regulatory proteins. An in vitro motility assay.
    Nikitina LV; Kopylova GV; Shchepkin DV; Katsnelson LB
    Biochemistry (Mosc); 2008 Feb; 73(2):178-84. PubMed ID: 18298374
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitroxyl effects on myocardium provide new insights into the significance of altered myofilament response to calcium in the regulation of contractility.
    Solaro RJ
    J Physiol; 2007 May; 580(Pt.3):697. PubMed ID: 17347260
    [No Abstract]   [Full Text] [Related]  

  • 36. Maintaining cooperation among cardiac myofilament proteins through thick and thin.
    Solaro RJ
    J Physiol; 2009 Jan; 587(1):3. PubMed ID: 19119179
    [No Abstract]   [Full Text] [Related]  

  • 37. Ca2+ regulation of the thin filaments: biochemical mechanism and physiological role.
    Marston S; Pritchard K; Redwood C; Taggart M
    Biochem Soc Trans; 1988 Aug; 16(4):494-7. PubMed ID: 3208977
    [No Abstract]   [Full Text] [Related]  

  • 38. The physiological role of cardiac cytoskeleton and its alterations in heart failure.
    Sequeira V; Nijenkamp LL; Regan JA; van der Velden J
    Biochim Biophys Acta; 2014 Feb; 1838(2):700-22. PubMed ID: 23860255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Troponin I isoforms and chimeras: tuning the molecular switch of cardiac contraction.
    Westfall MV; Metzger JM
    News Physiol Sci; 2001 Dec; 16():278-81. PubMed ID: 11719605
    [No Abstract]   [Full Text] [Related]  

  • 40. Spatially-compressed cardiac myofilament models generate hysteresis that is not found in real muscle.
    Rice JJ; Tu Y; Poggesi C; De Tombe PP
    Pac Symp Biocomput; 2008; ():366-77. PubMed ID: 18229700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.