These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 15710)
1. The chemical and kinetic consequences of the modification of papain by N-bromosuccinimide. Glick BR; Brubacher LJ Can J Biochem; 1977 Apr; 55(4):424-32. PubMed ID: 15710 [TBL] [Abstract][Full Text] [Related]
2. Chemical modification of two tryptophan residues abolishes the catalytic activity of aminoacylase. Kördel W; Schneider F Hoppe Seylers Z Physiol Chem; 1976 Aug; 357(8):1109-15. PubMed ID: 10243 [TBL] [Abstract][Full Text] [Related]
3. A kinetic and fluorimetric investigation of papain modified at tryptophan-69 and -177 by N-bromosuccinimide. Lowe G; Whitworth AS Biochem J; 1974 Aug; 141(2):503-15. PubMed ID: 4455219 [TBL] [Abstract][Full Text] [Related]
4. Kinetic studies on the chemical modification of lysozyme by N-bromosuccinimide and its protection by substrates and analogs. Hiromi K; Kawagishi T; Ohnishi M J Biochem; 1977 Jun; 81(6):1583-6. PubMed ID: 893364 [TBL] [Abstract][Full Text] [Related]
5. [Role of tryptophan in the enzymatic activity of histidine decarboxylase from Micrococcus sp. n]. Gonchar NA; Grebenshchikova OG; Komarova NV Biokhimiia; 1981 Nov; 46(11):1970-80. PubMed ID: 7317525 [TBL] [Abstract][Full Text] [Related]
6. Chemical modification of tryptophan residues in Escherichia coli succinyl-CoA synthetase. Effect on structure and enzyme activity. Ybarra J; Prasad AR; Nishimura JS Biochemistry; 1986 Nov; 25(22):7174-8. PubMed ID: 3542020 [TBL] [Abstract][Full Text] [Related]
7. Catalytic and regulatory functions of N-bromosuccinimide-modified bovine thrombin. Pal PK; Starr T; Gertler MM Thromb Res; 1984 Nov; 36(4):293-303. PubMed ID: 6523442 [TBL] [Abstract][Full Text] [Related]
8. Studies on the active site of papain. VI. Chemical modification of tryptophan residues by N-bromosuccinimide. Sakane M; Kanazawa H; Oara A Chem Pharm Bull (Tokyo); 1975 Aug; 23(8):1741-4. PubMed ID: 1182897 [No Abstract] [Full Text] [Related]
9. Stopped-flow chemical modification with N-bromosuccinimide: a good probe for changes in the microenvironment of the Trp 62 residue of chicken egg white lysozyme. Ohnishi M; Kawagishi T; Hiromi K Arch Biochem Biophys; 1989 Jul; 272(1):46-51. PubMed ID: 2735767 [TBL] [Abstract][Full Text] [Related]
10. Modification of bovine alpha-lactalbumin with N-bromosuccinimide and 2-hydroxy-5-nitrobenzylbromide. Bell JE; Castellino FJ; Trayer IP; Hill RL J Biol Chem; 1975 Oct; 250(19):7579-85. PubMed ID: 809437 [TBL] [Abstract][Full Text] [Related]
11. Chemical modification and inactivation of rat liver arginase by N-bromosuccinimide: reaction with His141. Daghigh F; Cavalli RC; Soprano DR; Ash DE Arch Biochem Biophys; 1996 Mar; 327(1):107-12. PubMed ID: 8615679 [TBL] [Abstract][Full Text] [Related]
12. Inactivation of cytosolic aspartate aminotransferase accompanying modification of Trp 48 by N-bromosuccinimide. Nagashima F; Tanase S; Morino Y FEBS Lett; 1986 Mar; 197(1-2):129-33. PubMed ID: 3949009 [TBL] [Abstract][Full Text] [Related]
13. Selective N-bromosuccinimide oxidation of the nonfluorescent tryptophan-31 in the active center of thioredoxin from Escherichia coli. Holmgren A Biochemistry; 1981 May; 20(11):3204-7. PubMed ID: 7018569 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of the hydrolysis of N-benzoyl-L-serine methyl ester catalysed by bromelain and by papain. Analysis of modifier mechanisms by lattice nomography, computational methods of parameter evaluation for substrate-activated catalyses and consequences of postulated non-productive binding in bromelain- and papain-catalysed hydrolyses. Wharton CW; Cornish-Bowden A; Brocklehurst K; Crook EM Biochem J; 1974 Aug; 141(2):365-381. PubMed ID: 4455211 [TBL] [Abstract][Full Text] [Related]
15. Studies of the N-bromosuccinimide inactivation of the enzyme rhodanese. Guido K; Horowitz P Biochim Biophys Acta; 1977 Nov; 485(1):95-100. PubMed ID: 911868 [TBL] [Abstract][Full Text] [Related]
16. Covalent modification and site-directed mutagenesis of an active site tryptophan of human prostatic acid phosphatase. Zhang Z; Ostanin K; Van Etten RL Acta Biochim Pol; 1997; 44(4):659-72. PubMed ID: 9584846 [TBL] [Abstract][Full Text] [Related]
17. Stopped-flow studies on the chemical modification with N-bromosuccinimide of model compounds of tryptophan residues. Ohnishi M; Kawagishi T; Abe T; Hiromi K J Biochem; 1980 Jan; 87(1):273-9. PubMed ID: 7358635 [TBL] [Abstract][Full Text] [Related]
18. [Changes in biological properties of botulinum neurotoxin a induced by chemical modification of its molecule by tryptophan and tyrosine]. Shibaeva IV; Kolesnikova VA; Ivanov KK Biokhimiia; 1981 May; 46(5):825-31. PubMed ID: 6794652 [TBL] [Abstract][Full Text] [Related]
19. Bacillus cereus beta-lactamase. Reaction with N-bromosuccinimide and the properties of the product. Ogawara H; Umezawa H Biochim Biophys Acta; 1975 Jun; 391(2):435-47. PubMed ID: 807248 [TBL] [Abstract][Full Text] [Related]
20. Role of one tryptophan residue in the lethal activity of Clostridium perfringens epsilon toxin. Sakurai J; Nagahama M Biochem Biophys Res Commun; 1985 Apr; 128(2):760-6. PubMed ID: 2859854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]