These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 157101)

  • 1. Preliminary observations on the synthesis of glycosaminoglycans in the sea urchin embryo.
    Nakatsuji N; Løvtrup S
    Arch Anat Microsc Morphol Exp; 1978; 67(3):185-9. PubMed ID: 157101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfated polysaccharides and cell differentiation in the sea urchin embryo.
    Løvtrup-Rein H; Løvtrup S
    Exp Cell Biol; 1984; 52(6):383-8. PubMed ID: 6238860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin proteins from normal, vegetalized, and animalized sea urchin embryos.
    Gineitis AA; Stankeviciute JV; Vorob'ev VI
    Dev Biol; 1976 Sep; 52(2):181-92. PubMed ID: 12194431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dermatan sulfate formation in gastrulae of the sea urchin Clypeaster japonicus.
    Yamaguchi M; Kinoshita S; Suzuki N
    J Biochem; 1989 Jul; 106(1):158-62. PubMed ID: 2777747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of sulfate donor in developing sea urchin embryos.
    Kinoshita S
    Exp Cell Res; 1974 Aug; 87(2):382-5. PubMed ID: 4278300
    [No Abstract]   [Full Text] [Related]  

  • 6. Temporal pattern of RNA synthesis in animalized sea urchin embryos.
    Eckberg WR; Ozaki H
    Exp Cell Res; 1972 Jul; 73(1):177-81. PubMed ID: 5036986
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of lithium on ionic balance and polyphosphoinositide metabolism during larval vegetalization of the sea urchin Paracentrotus lividus.
    Ciapa B; Maggio K
    Dev Biol; 1993 Sep; 159(1):114-21. PubMed ID: 8396053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An altered series of ectodermal gene expressions accompanying the reversible suspension of differentiation in the zinc-animalized sea urchin embryo.
    Nemer M
    Dev Biol; 1986 Mar; 114(1):214-24. PubMed ID: 3956862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid induction of a hyperciliated phenotype in zinc-arrested sea urchin embryos by theophylline.
    Stephens RE
    J Exp Zool; 1994 Jun; 269(2):106-15. PubMed ID: 8207382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycosaminoglycan production in cultures of early and late passage human endothelial cells: the influence of an anionic endothelial cell growth factor and the extracellular matrix.
    Gordon PB; Conn G; Hatcher VB
    J Cell Physiol; 1985 Dec; 125(3):596-607. PubMed ID: 3905832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteoglycan and glycosaminoglycan synthesis by cultured rat mesangial cells.
    Groggel GC; Hovingh P; Linker A
    J Cell Physiol; 1991 Jun; 147(3):455-9. PubMed ID: 1906068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TCF is the nuclear effector of the beta-catenin signal that patterns the sea urchin animal-vegetal axis.
    Vonica A; Weng W; Gumbiner BM; Venuti JM
    Dev Biol; 2000 Jan; 217(2):230-43. PubMed ID: 10625549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Difference between the glycosaminoglycans synthetized by corneal and cutaneous fibroblasts in culture.
    Klintworth GK; Smith CF
    Lab Invest; 1981 Jun; 44(6):553-9. PubMed ID: 7230738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of glycosaminoglycans by cultures of normal human corneal endothelial and stromal cells.
    Yue BY; Baum JL; Silbert JE
    Invest Ophthalmol Vis Sci; 1978 Jun; 17(6):523-7. PubMed ID: 659073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embryos of the sea urchin Strongylocentrotus purpuratus synthesize a dermatan sulfate enriched in 4-O- and 6-O-disulfated galactosamine units.
    Vilela-Silva AC; Werneck CC; Valente AP; Vacquier VD; Mourão PA
    Glycobiology; 2001 Jun; 11(6):433-40. PubMed ID: 11445548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregation of cells isolated from vegetalized and animalized sea urchin embryos.
    GIUDICE G
    Experientia; 1963 Feb; 19():83-4. PubMed ID: 13948262
    [No Abstract]   [Full Text] [Related]  

  • 17. A comparison of protein synthetic patterns in normal and animalized sea urchin embryos.
    Carroll AG; Eckberg WR; Ozaki H
    Exp Cell Res; 1975 Feb; 90(2):328-32. PubMed ID: 1112276
    [No Abstract]   [Full Text] [Related]  

  • 18. Ribosomal RNA Synthesis in Sea Urchin Embryos: Differential Rates of Accumulation in Chemically-induced Animalized and Vegetalized Larvae: (animalization/vegetalization/rRNA synthesis/sea urchin embryos).
    O'Melia AF
    Dev Growth Differ; 1983; 25(2):171-180. PubMed ID: 37281227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of vanadate on tyrosine phosphorylation and the pattern of glycosaminoglycan synthesis in rabbit chondrocytes in culture.
    Owada MK; Iwamoto M; Koike T; Kato Y
    J Cell Physiol; 1989 Mar; 138(3):484-92. PubMed ID: 2466851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary differentiation and ectoderm-specific gene expression in the animalized sea urchin embryo.
    Nemer M; Wilkinson DG; Travaglini EC
    Dev Biol; 1985 Jun; 109(2):418-27. PubMed ID: 3996757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.