These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Increased expression of osteopontin in the spinal cords of Lewis rats with experimental autoimmune neuritis. Moon C; Shin T J Vet Sci; 2004 Dec; 5(4):289-93. PubMed ID: 15613811 [TBL] [Abstract][Full Text] [Related]
7. Distinct types of microglial activation in white and grey matter of rat lumbosacral cord after mid-thoracic spinal transection. McKay SM; Brooks DJ; Hu P; McLachlan EM J Neuropathol Exp Neurol; 2007 Aug; 66(8):698-710. PubMed ID: 17882014 [TBL] [Abstract][Full Text] [Related]
8. Spinal changes associated with mechanical hypersensitivity in a model of Guillain-Barré syndrome. Luongo L; Sajic M; Grist J; Clark AK; Maione S; Malcangio M Neurosci Lett; 2008 May; 437(2):98-102. PubMed ID: 18448252 [TBL] [Abstract][Full Text] [Related]
9. Lesional accumulation of P2X(4) receptor(+) macrophages in rat CNS during experimental autoimmune encephalomyelitis. Guo LH; Schluesener HJ Neuroscience; 2005; 134(1):199-205. PubMed ID: 15964696 [TBL] [Abstract][Full Text] [Related]
10. Direct evidence for spinal cord microglia in the development of a neuropathic pain-like state in mice. Narita M; Yoshida T; Nakajima M; Narita M; Miyatake M; Takagi T; Yajima Y; Suzuki T J Neurochem; 2006 Jun; 97(5):1337-48. PubMed ID: 16606373 [TBL] [Abstract][Full Text] [Related]
11. Characterization of cell proliferation in rat spinal cord following peripheral nerve injury and the relationship with neuropathic pain. Echeverry S; Shi XQ; Zhang J Pain; 2008 Mar; 135(1-2):37-47. PubMed ID: 17560721 [TBL] [Abstract][Full Text] [Related]
12. AIF-1 expression defines a proliferating and alert microglial/macrophage phenotype following spinal cord injury in rats. Schwab JM; Frei E; Klusman I; Schnell L; Schwab ME; Schluesener HJ J Neuroimmunol; 2001 Oct; 119(2):214-22. PubMed ID: 11585624 [TBL] [Abstract][Full Text] [Related]
13. Differential microglial regulation in the human spinal cord under normal and pathological conditions. Stoll M; Capper D; Dietz K; Warth A; Schleich A; Schlaszus H; Meyermann R; Mittelbronn M Neuropathol Appl Neurobiol; 2006 Dec; 32(6):650-61. PubMed ID: 17083479 [TBL] [Abstract][Full Text] [Related]
14. Immunohistochemical study of caveolin-1 in the sciatic nerves of Lewis rats with experimental autoimmune neuritis. Ahn M; Moon C; Kim H; Lee J; Sung Koh C; Matsumoto Y; Shin T Brain Res; 2006 Aug; 1102(1):86-91. PubMed ID: 16806125 [TBL] [Abstract][Full Text] [Related]
18. Co-expression of radial glial marker in macrophages/microglia in rat spinal cord contusion injury model. Wu D; Miyamoto O; Shibuya S; Mori S; Norimatsu H; Janjua NA; Itano T Brain Res; 2005 Jul; 1051(1-2):183-8. PubMed ID: 15993386 [TBL] [Abstract][Full Text] [Related]
19. Prolonged lesional expression of RhoA and RhoB following spinal cord injury. Conrad S; Schluesener HJ; Trautmann K; Joannin N; Meyermann R; Schwab JM J Comp Neurol; 2005 Jun; 487(2):166-75. PubMed ID: 15880494 [TBL] [Abstract][Full Text] [Related]
20. Immunohistochemical study of flotillin-1 in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis. Kim H; Ahn M; Moon C; Matsumoto Y; Sung Koh C; Shin T Brain Res; 2006 Oct; 1114(1):204-11. PubMed ID: 16919610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]