These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 15710454)

  • 1. Experimental autoimmune neuritis induces differential microglia activation in the rat spinal cord.
    Beiter T; Artelt MR; Trautmann K; Schluesener HJ
    J Neuroimmunol; 2005 Mar; 160(1-2):25-31. PubMed ID: 15710454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transforming growth factor beta expression in reactive spinal cord microglia and meningeal inflammatory cells during experimental allergic neuritis.
    Kiefer R; Gold R; Gehrmann J; Lindholm D; Wekerle H; Kreutzberg GW
    J Neurosci Res; 1993 Nov; 36(4):391-8. PubMed ID: 7505838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal cord microglia in experimental allergic neuritis. Evidence for fast and remote activation.
    Gehrmann J; Gold R; Linington C; Lannes-Vieira J; Wekerle H; Kreutzberg GW
    Lab Invest; 1992 Jul; 67(1):100-13. PubMed ID: 1625441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microglia activation in rat spinal cord by systemic injection of TLR3 and TLR7/8 agonists.
    Zhang Z; Trautmann K; Schluesener HJ
    J Neuroimmunol; 2005 Jul; 164(1-2):154-60. PubMed ID: 15904976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical allodynia and spinal up-regulation of P2X4 receptor in experimental autoimmune neuritis rats.
    Zhang Z; Zhang ZY; Fauser U; Schluesener HJ
    Neuroscience; 2008 Mar; 152(2):495-501. PubMed ID: 18276080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased expression of osteopontin in the spinal cords of Lewis rats with experimental autoimmune neuritis.
    Moon C; Shin T
    J Vet Sci; 2004 Dec; 5(4):289-93. PubMed ID: 15613811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct types of microglial activation in white and grey matter of rat lumbosacral cord after mid-thoracic spinal transection.
    McKay SM; Brooks DJ; Hu P; McLachlan EM
    J Neuropathol Exp Neurol; 2007 Aug; 66(8):698-710. PubMed ID: 17882014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinal changes associated with mechanical hypersensitivity in a model of Guillain-Barré syndrome.
    Luongo L; Sajic M; Grist J; Clark AK; Maione S; Malcangio M
    Neurosci Lett; 2008 May; 437(2):98-102. PubMed ID: 18448252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lesional accumulation of P2X(4) receptor(+) macrophages in rat CNS during experimental autoimmune encephalomyelitis.
    Guo LH; Schluesener HJ
    Neuroscience; 2005; 134(1):199-205. PubMed ID: 15964696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct evidence for spinal cord microglia in the development of a neuropathic pain-like state in mice.
    Narita M; Yoshida T; Nakajima M; Narita M; Miyatake M; Takagi T; Yajima Y; Suzuki T
    J Neurochem; 2006 Jun; 97(5):1337-48. PubMed ID: 16606373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of cell proliferation in rat spinal cord following peripheral nerve injury and the relationship with neuropathic pain.
    Echeverry S; Shi XQ; Zhang J
    Pain; 2008 Mar; 135(1-2):37-47. PubMed ID: 17560721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AIF-1 expression defines a proliferating and alert microglial/macrophage phenotype following spinal cord injury in rats.
    Schwab JM; Frei E; Klusman I; Schnell L; Schwab ME; Schluesener HJ
    J Neuroimmunol; 2001 Oct; 119(2):214-22. PubMed ID: 11585624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential microglial regulation in the human spinal cord under normal and pathological conditions.
    Stoll M; Capper D; Dietz K; Warth A; Schleich A; Schlaszus H; Meyermann R; Mittelbronn M
    Neuropathol Appl Neurobiol; 2006 Dec; 32(6):650-61. PubMed ID: 17083479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunohistochemical study of caveolin-1 in the sciatic nerves of Lewis rats with experimental autoimmune neuritis.
    Ahn M; Moon C; Kim H; Lee J; Sung Koh C; Matsumoto Y; Shin T
    Brain Res; 2006 Aug; 1102(1):86-91. PubMed ID: 16806125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of P2X4 receptor by lesional activated microglia during formalin-induced inflammatory pain.
    Guo LH; Trautmann K; Schluesener HJ
    J Neuroimmunol; 2005 Jun; 163(1-2):120-7. PubMed ID: 15885314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of resident endoneurial macrophages to the local cellular response in experimental autoimmune neuritis.
    Müller M; Stenner M; Wacker K; Ringelstein EB; Hickey WF; Kiefer R
    J Neuropathol Exp Neurol; 2006 May; 65(5):499-507. PubMed ID: 16772873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Astrocytosis, microglia activation, oligodendrocyte degeneration, and pyknosis following acute spinal cord injury.
    Gomes-Leal W; Corkill DJ; Freire MA; Picanço-Diniz CW; Perry VH
    Exp Neurol; 2004 Dec; 190(2):456-67. PubMed ID: 15530884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-expression of radial glial marker in macrophages/microglia in rat spinal cord contusion injury model.
    Wu D; Miyamoto O; Shibuya S; Mori S; Norimatsu H; Janjua NA; Itano T
    Brain Res; 2005 Jul; 1051(1-2):183-8. PubMed ID: 15993386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prolonged lesional expression of RhoA and RhoB following spinal cord injury.
    Conrad S; Schluesener HJ; Trautmann K; Joannin N; Meyermann R; Schwab JM
    J Comp Neurol; 2005 Jun; 487(2):166-75. PubMed ID: 15880494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunohistochemical study of flotillin-1 in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis.
    Kim H; Ahn M; Moon C; Matsumoto Y; Sung Koh C; Shin T
    Brain Res; 2006 Oct; 1114(1):204-11. PubMed ID: 16919610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.