BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 1571055)

  • 1. [A short history of hearing research. IV: Physiology].
    Gitter AH; Preyer S
    Laryngorhinootologie; 1992 Feb; 71(2):110-5. PubMed ID: 1571055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental look at cochlear mechanics.
    Dancer A
    Audiology; 1992; 31(6):301-12. PubMed ID: 1492814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent developments in cochlear physiology.
    Lippe WR
    Ear Hear; 1986 Aug; 7(4):233-9. PubMed ID: 3743914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [A brief history of hearing research. III. Microscopic anatomy].
    Gitter AH; Preyer S
    Laryngorhinootologie; 1991 Aug; 70(8):417-21. PubMed ID: 1910378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical tuning and amplification within the apex of the guinea pig cochlea.
    Recio-Spinoso A; Oghalai JS
    J Physiol; 2017 Jul; 595(13):4549-4561. PubMed ID: 28382742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Timing of cochlear feedback: spatial and temporal representation of a tone across the basilar membrane.
    Nilsen KE; Russell IJ
    Nat Neurosci; 1999 Jul; 2(7):642-8. PubMed ID: 10404197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reverse transduction measured in the isolated cochlea by laser Michelson interferometry.
    Mammano F; Ashmore JF
    Nature; 1993 Oct; 365(6449):838-41. PubMed ID: 8413667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A short history of hearing research. II. Renaissance].
    Gitter AH
    Laryngorhinootologie; 1990 Sep; 69(9):495-500. PubMed ID: 2242190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An abbreviated history of the ear: from Renaissance to present.
    Hachmeister JE
    Yale J Biol Med; 2003; 76(2):81-6. PubMed ID: 15369636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency tuning of mechanical responses in the mammalian cochlea.
    Robles L; Alcayaga C
    Biol Res; 1996; 29(3):325-31. PubMed ID: 9278704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In defence of the travelling wave concept.
    Tonndorf J
    J Otolaryngol; 1980 Aug; 9(4):316-28. PubMed ID: 7420522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Longitudinal pattern of basilar membrane vibration in the sensitive cochlea.
    Ren T
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):17101-6. PubMed ID: 12461165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory transduction and frequency selectivity in the basal turn of the guinea-pig cochlea.
    Russell IJ; Kössl M
    Philos Trans R Soc Lond B Biol Sci; 1992 Jun; 336(1278):317-24. PubMed ID: 1354370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-architectures of the osseous spiral laminae and spiral limbus in the mouse cochlea: a scanning electron microscopic study on the morphological basis of the auditory mechanics.
    Kücük B
    Hokkaido Igaku Zasshi; 1990 Nov; 65(6):612-27. PubMed ID: 2265821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wever and Lawrence revisited: effects of nulling basilar membrane movement on concomitant whole-nerve action potential.
    Offut G
    J Aud Res; 1986 Jan; 26(1):43-54. PubMed ID: 3610990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the cochlea: wave-mediated positive feedback between cells.
    Bell A
    Biol Cybern; 2007 Apr; 96(4):421-38. PubMed ID: 17216524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postnatal development of the hamster cochlea. I. Growth of hair cells and the organ of Corti.
    Kaltenbach JA; Falzarano PR
    J Comp Neurol; 1994 Feb; 340(1):87-97. PubMed ID: 8176004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of direct current on vibration of cochlear basilar membrane].
    Guo M
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 2001 Oct; 36(5):338-41. PubMed ID: 12761940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experiments in comparative hearing: Georg von Békésy and beyond.
    Manley GA; Narins PM; Fay RR
    Hear Res; 2012 Nov; 293(1-2):44-50. PubMed ID: 22560960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensors, motors, and tuning in the cochlea: interacting cells could form a surface acoustic wave resonator.
    Bell A
    Bioinspir Biomim; 2006 Sep; 1(3):96-101. PubMed ID: 17671311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.