These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 15710902)
1. Sulfide binding is mediated by zinc ions discovered in the crystal structure of a hydrothermal vent tubeworm hemoglobin. Flores JF; Fisher CR; Carney SL; Green BN; Freytag JK; Schaeffer SW; Royer WE Proc Natl Acad Sci U S A; 2005 Feb; 102(8):2713-8. PubMed ID: 15710902 [TBL] [Abstract][Full Text] [Related]
2. Primary structure of the common polypeptide chain b from the multi-hemoglobin system of the hydrothermal vent tube worm Riftia pachyptila: an insight on the sulfide binding-site. Zal F; Suzuki T; Kawasaki Y; Childress JJ; Lallier FH; Toulmond A Proteins; 1997 Dec; 29(4):562-74. PubMed ID: 9408952 [TBL] [Abstract][Full Text] [Related]
3. Evolution of the sulfide-binding function within the globin multigenic family of the deep-sea hydrothermal vent tubeworm Riftia pachyptila. Bailly X; Jollivet D; Vanin S; Deutsch J; Zal F; Lallier F; Toulmond A Mol Biol Evol; 2002 Sep; 19(9):1421-33. PubMed ID: 12200470 [TBL] [Abstract][Full Text] [Related]
4. The loss of the hemoglobin H2S-binding function in annelids from sulfide-free habitats reveals molecular adaptation driven by Darwinian positive selection. Bailly X; Leroy R; Carney S; Collin O; Zal F; Toulmond A; Jollivet D Proc Natl Acad Sci U S A; 2003 May; 100(10):5885-90. PubMed ID: 12721359 [TBL] [Abstract][Full Text] [Related]
5. Hydrogen Does Not Appear To Be a Major Electron Donor for Symbiosis with the Deep-Sea Hydrothermal Vent Tubeworm Riftia pachyptila. Mitchell JH; Leonard JM; Delaney J; Girguis PR; Scott KM Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31628148 [TBL] [Abstract][Full Text] [Related]
6. Effects of metabolite uptake on proton-equivalent elimination by two species of deep-sea vestimentiferan tubeworm, Riftia pachyptila and Lamellibrachia cf luymesi: proton elimination is a necessary adaptation to sulfide-oxidizing chemoautotrophic symbionts. Girguis PR; Childress JJ; Freytag JK; Klose K; Stuber R J Exp Biol; 2002 Oct; 205(Pt 19):3055-66. PubMed ID: 12200408 [TBL] [Abstract][Full Text] [Related]
7. S-Sulfohemoglobin and disulfide exchange: the mechanisms of sulfide binding by Riftia pachyptila hemoglobins. Zal F; Leize E; Lallier FH; Toulmond A; Van Dorsselaer A; Childress JJ Proc Natl Acad Sci U S A; 1998 Jul; 95(15):8997-9002. PubMed ID: 9671793 [TBL] [Abstract][Full Text] [Related]
8. Cooccurring Activities of Two Autotrophic Pathways in Symbionts of the Hydrothermal Vent Tubeworm Leonard JM; Mitchell J; Beinart RA; Delaney JA; Sanders JG; Ellis G; Goddard EA; Girguis PR; Scott KM Appl Environ Microbiol; 2021 Aug; 87(17):e0079421. PubMed ID: 34190607 [TBL] [Abstract][Full Text] [Related]
9. Sulfide acquisition by the vent worm Riftia pachyptila appears to be via uptake of HS-, rather than H2S. Goffredi SK; Childress JJ; Desaulniers NT; Lallier FJ J Exp Biol; 1997 Oct; 200(Pt 20):2609-16. PubMed ID: 9359367 [TBL] [Abstract][Full Text] [Related]
11. Widespread occurrence of two carbon fixation pathways in tubeworm endosymbionts: lessons from hydrothermal vent associated tubeworms from the mediterranean sea. Thiel V; Hügler M; Blümel M; Baumann HI; Gärtner A; Schmaljohann R; Strauss H; Garbe-Schönberg D; Petersen S; Cowart DA; Fisher CR; Imhoff JF Front Microbiol; 2012; 3():423. PubMed ID: 23248622 [TBL] [Abstract][Full Text] [Related]
12. The multi-hemoglobin system of the hydrothermal vent tube worm Riftia pachyptila. I. Reexamination of the number and masses of its constituents. Zal F; Lallier FH; Wall JS; Vinogradov SN; Toulmond A J Biol Chem; 1996 Apr; 271(15):8869-74. PubMed ID: 8621528 [TBL] [Abstract][Full Text] [Related]
13. Metabolite uptake, stoichiometry and chemoautotrophic function of the hydrothermal vent tubeworm Riftia pachyptila: responses to environmental variations in substrate concentrations and temperature. Girguis PR; Childress JJ J Exp Biol; 2006 Sep; 209(Pt 18):3516-28. PubMed ID: 16943492 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of ATP sulfurylase from the bacterial symbiont of the hydrothermal vent tubeworm Riftia pachyptila. Beynon JD; MacRae IJ; Huston SL; Nelson DC; Segel IH; Fisher AJ Biochemistry; 2001 Dec; 40(48):14509-17. PubMed ID: 11724564 [TBL] [Abstract][Full Text] [Related]
15. Oxygenation properties of the two co-occurring hemoglobins of the tube worm Riftia pachyptila. Arp AJ; Doyle ML; Di Cera E; Gill SJ Respir Physiol; 1990; 80(2-3):323-34. PubMed ID: 2218103 [TBL] [Abstract][Full Text] [Related]
16. The genome of a vestimentiferan tubeworm (Ridgeia piscesae) provides insights into its adaptation to a deep-sea environment. Wang M; Ruan L; Liu M; Liu Z; He J; Zhang L; Wang Y; Shi H; Chen M; Yang F; Zeng R; He J; Guo C; Chen J BMC Genomics; 2023 Feb; 24(1):72. PubMed ID: 36774470 [TBL] [Abstract][Full Text] [Related]
17. Environmental differences in hemoglobin gene expression in the hydrothermal vent tubeworm, Ridgeia piscesae. Carney SL; Flores JF; Orobona KM; Butterfield DA; Fisher CR; Schaeffer SW Comp Biochem Physiol B Biochem Mol Biol; 2007 Mar; 146(3):326-37. PubMed ID: 17240180 [TBL] [Abstract][Full Text] [Related]
19. Fate of nitrate acquired by the tubeworm Riftia pachyptila. Girguis PR; Lee RW; Desaulniers N; Childress JJ; Pospesel M; Felbeck H; Zal F Appl Environ Microbiol; 2000 Jul; 66(7):2783-90. PubMed ID: 10877768 [TBL] [Abstract][Full Text] [Related]
20. Linking hydrothermal geochemistry to organismal physiology: physiological versatility in Riftia pachyptila from sedimented and basalt-hosted vents. Robidart JC; Roque A; Song P; Girguis PR PLoS One; 2011; 6(7):e21692. PubMed ID: 21779334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]