BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 15711774)

  • 1. Time-dependent interactions of glibenclamide with CFTR: kinetically complex block of macroscopic currents.
    Zhang ZR; Cui G; Zeltwanger S; McCarty NA
    J Membr Biol; 2004 Oct; 201(3):139-55. PubMed ID: 15711774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between permeation and gating in a putative pore domain mutant in the cystic fibrosis transmembrane conductance regulator.
    Zhang ZR; McDonough SI; McCarty NA
    Biophys J; 2000 Jul; 79(1):298-313. PubMed ID: 10866956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing an open CFTR pore with organic anion blockers.
    Zhou Z; Hu S; Hwang TC
    J Gen Physiol; 2002 Nov; 120(5):647-62. PubMed ID: 12407077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady-state interactions of glibenclamide with CFTR: evidence for multiple sites in the pore.
    Zhang ZR; Zeltwanger S; McCarty NA
    J Membr Biol; 2004 May; 199(1):15-28. PubMed ID: 15366420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A functional CFTR-NBF1 is required for ROMK2-CFTR interaction.
    McNicholas CM; Nason MW; Guggino WB; Schwiebert EM; Hebert SC; Giebisch G; Egan ME
    Am J Physiol; 1997 Nov; 273(5):F843-8. PubMed ID: 9374850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of glibenclamide inhibition of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in a murine cell line.
    Sheppard DN; Robinson KA
    J Physiol; 1997 Sep; 503 ( Pt 2)(Pt 2):333-46. PubMed ID: 9306276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct comparison of NPPB and DPC as probes of CFTR expressed in Xenopus oocytes.
    Zhang ZR; Zeltwanger S; McCarty NA
    J Membr Biol; 2000 May; 175(1):35-52. PubMed ID: 10811966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-dependent block of the cystic fibrosis transmembrane conductance regulator Cl- channel by two closely related arylaminobenzoates.
    McCarty NA; McDonough S; Cohen BN; Riordan JR; Davidson N; Lester HA
    J Gen Physiol; 1993 Jul; 102(1):1-23. PubMed ID: 8397274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential contribution of TM6 and TM12 to the pore of CFTR identified by three sulfonylurea-based blockers.
    Cui G; Song B; Turki HW; McCarty NA
    Pflugers Arch; 2012 Mar; 463(3):405-18. PubMed ID: 22160394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of heterologously expressed cystic fibrosis transmembrane conductance regulator Cl- channels by non-sulphonylurea hypoglycaemic agents.
    Cai Z; Lansdell KA; Sheppard DN
    Br J Pharmacol; 1999 Sep; 128(1):108-18. PubMed ID: 10498841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Point mutations in the pore region directly or indirectly affect glibenclamide block of the CFTR chloride channel.
    Gupta J; Linsdell P
    Pflugers Arch; 2002 Mar; 443(5-6):739-47. PubMed ID: 11889571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of recombinant cardiac cystic fibrosis transmembrane conductance regulator chloride channels by protein kinase C.
    Yamazaki J; Britton F; Collier ML; Horowitz B; Hume JR
    Biophys J; 1999 Apr; 76(4):1972-87. PubMed ID: 10096895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potent inhibition of the CFTR chloride channel by suramin.
    Bachmann A; Russ U; Quast U
    Naunyn Schmiedebergs Arch Pharmacol; 1999 Oct; 360(4):473-6. PubMed ID: 10551285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and ionic determinants of 5-nitro-2-(3-phenylprophyl-amino)-benzoic acid block of the CFTR chloride channel.
    Walsh KB; Long KJ; Shen X
    Br J Pharmacol; 1999 May; 127(2):369-76. PubMed ID: 10385235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrates of multidrug resistance-associated proteins block the cystic fibrosis transmembrane conductance regulator chloride channel.
    Linsdell P; Hanrahan JW
    Br J Pharmacol; 1999 Mar; 126(6):1471-7. PubMed ID: 10217542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Location of a common inhibitor binding site in the cytoplasmic vestibule of the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Linsdell P
    J Biol Chem; 2005 Mar; 280(10):8945-50. PubMed ID: 15634668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between permeant and blocking anions inside the CFTR chloride channel pore.
    Linsdell P
    Biochim Biophys Acta; 2015 Jul; 1848(7):1573-90. PubMed ID: 25892339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The CLIC1 chloride channel is regulated by the cystic fibrosis transmembrane conductance regulator when expressed in Xenopus oocytes.
    Edwards JC
    J Membr Biol; 2006; 213(1):39-46. PubMed ID: 17347778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergent CFTR orthologs respond differently to the channel inhibitors CFTRinh-172, glibenclamide, and GlyH-101.
    Stahl M; Stahl K; Brubacher MB; Forrest JN
    Am J Physiol Cell Physiol; 2012 Jan; 302(1):C67-76. PubMed ID: 21940661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cystic fibrosis transmembrane conductance regulator activates water conductance in Xenopus oocytes.
    Schreiber R; Greger R; Nitschke R; Kunzelmann K
    Pflugers Arch; 1997 Nov; 434(6):841-7. PubMed ID: 9306020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.